图的最短路径—— dijkstra算法

简介: 算法的思想如下:规定一个 出发点,然后先初始化距离数组。数组中的每个下标就对应一个结点,每个数据项就是出发点到每个结点的距离。1:将一个集合分为两部分,一个是已经找过的结点U,一个是没有找到过的v2:在距离的数组中,没有访问过的结点中找一个权重最小的边,然后将这个结点添加到u中,并且以这个结点作为中间结点,来更新数组,判断条件是i到temp+temp到j 的距离是不是小于i到j的距离,若是,则就要更新。

算法的思想如下:
规定一个 出发点,然后先初始化距离数组。数组中的每个下标就对应一个结点,每个数据项就是出发点到每个结点的距离。
1:将一个集合分为两部分,一个是已经找过的结点U,一个是没有找到过的v

2:在距离的数组中,没有访问过的结点中找一个权重最小的边,然后将这个结点添加到u中,并且以这个结点作为中间结点,来更新数组,判断条件是i到temp+temp到j 的距离是不是小于i到j的距离,若是,则就要更新。

3:直到u中的结点的个数=图中的结点的个数

算法的实现其实还是比较简单,和prim算法图的prim算法没什么差别,都是维护一个距离数组,来更新数组,不同的是只是添加一个判断条件而已。,在这里就没什么可说的,不懂的分析程序,运行结果一两遍就基本明白了


程序如下:
//
//  main.cpp
//  dijkstra
//
//  Created by 橘子和香蕉 on 2018/12/2.
//  Copyright © 2018 橘子和香蕉. All rights reserved.
//
/*
 
 其实思想和之前的prim算法一样,还是分为两个集合,一个是访问过的u,一个是访问过的v,找一个中间结点,判断 i到j的距离和i到temp+demp到j的距离那个短,更新就好。
 还是要维护一个距离的数组,在没有访问过的结点中每次找一个最小的边,同时也就是找到了v的结点,添加到u中,然后以这个结点为中间结点来更新距离数组,判断i到j的距离和i到temp+demp到j的距离,
 f
 */
#include <iostream>
using namespace std;
#define MAX 9999//用9999来表示不可到达。为什么不用之前的INT_MAX,因为在之后的距离的更新会产生问题。INT_MAX是int的最大值,在加就会导致胃负数,这就产生了问题
typedef struct node{
    char  data;//数据域
    int isAccess;//用来标记是否被访问过
}node;
#define VERTEXNUM 100
class Graph{
private:
    node  vertex[VERTEXNUM];//顶点表
    int edge[VERTEXNUM][VERTEXNUM];//边表
    int vertexNum;//顶点个数
    int edgeNum;//边的个数
    
    
    
    int locate(char  data);//在顶点表中找data的位置
    void initEdge();
    
public:
    Graph(int vertexNum,int edgeNum);
    void create();
    void dijkstra(char data);
    void printGraph();//输出
};

void Graph::printGraph(){
    cout<<endl;
    cout<<endl;
    cout<<"顶点边:\n";
    cout<<"vertexNum:"<<vertexNum<<" edgeNum:"<<edgeNum<<endl;
    for (int i = 0; i<vertexNum; i++) {
        cout<<vertex[i].data<<"\t";
    }
    cout<<endl;
    cout<<"边表如下:\n";
    
    for (int j = 0; j<vertexNum; j++) {
        for (int k = 0; k<vertexNum ; k++) {
            cout<<edge[j][k]<<"\t";
        }
        cout<<endl;
    }
}

int Graph::locate(char  data){
    for (int i  = 0; i<vertexNum;i++) {
        if(vertex[i].data == data){
            return i;
        }
    }
    return -1;
}
Graph::Graph(int vertexNum,int edgeNum){
    this->vertexNum = vertexNum;
    this->edgeNum = edgeNum;
    initEdge();
}
void Graph::create(){
    cout<<"input Graph data\n";
    for (int i = 0; i<vertexNum; i++) {
        cin>>vertex[i].data;
        vertex[i].isAccess = false;
    }
    char start ,end;
    int wieght = -1;
    for (int j = 0; j<edgeNum; j++) {
        
        cout<<"input start and end of edge:\n";
        cin>>start>>end>>wieght;
        int startPosition = locate(start);
        int endPosition = locate(end);
        edge[startPosition][endPosition] = wieght;
        edge[endPosition][startPosition] = wieght;
    }
    
}
void Graph:: initEdge(){
    for (int i = 0;  i<vertexNum; i++) {
        for (int j =0 ; j<=i; j++) {
            edge[i][j] = MAX;
            edge[j][i] = MAX;
        }
    }
}
void Graph::dijkstra(char data){
    int distince[100];//定义一个中间数组
    int temp = -1;//定义中间结点
    
    int position = locate(data);
    
    vertex[position].isAccess = true;
    
    //初始化distince数组
    for (int i = 0; i<vertexNum; i++) {
        if( edge[position][i] < MAX ){
            distince[i] = edge[position][i];
        }else{
            distince[i] = MAX;
        }
    }
    
   
    
    int minVertexNum = 0;//定义结点个数
    while (minVertexNum != vertexNum-1) {
        int min = MAX;
        for (int i = 0; i<vertexNum; i++) {
            if( vertex[i].isAccess == false && distince[i] < min){
                min = distince[i];
                temp = i;
            }
        }
        vertex[temp].isAccess = true;
        for (int i = 0; i<vertexNum; i++) {
            if((vertex[i].isAccess == false) && ( distince[temp]+edge[temp][i] < distince[i]) ){
                distince[i] = distince[temp]+edge[temp][i];
            }
        }
        
        
        
        
        
        minVertexNum++;
    }
    cout<<"到每个结点的最短距离如下"<<endl;
    for (int i  = 0; i<vertexNum; i++) {
        cout<<vertex[i].data<<":"<<distince[i]<<"\n";
    }
    
    
}
int main(){
    Graph a(6,8);
    a.create();
    a.printGraph();
    cout<<endl;
    a.dijkstra('1');
    return 1;
}

测试的图如下:
在这里用的是临接矩阵来实现无向图;
image
运行结果如下:
image

相关文章
|
3月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
102 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
3月前
|
存储 算法 程序员
迪杰斯特拉(Dijkstra)算法(C/C++)
迪杰斯特拉(Dijkstra)算法(C/C++)
|
5月前
|
算法 定位技术
路径规划算法 - 求解最短路径 - A*(A-Star)算法
路径规划算法 - 求解最短路径 - A*(A-Star)算法
174 1
|
5月前
|
机器学习/深度学习 算法 Java
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
这篇文章介绍了基于贪婪技术思想的Prim算法和Dijkstra算法,包括它们的伪代码描述、Java源代码实现、时间效率分析,并展示了算法的测试用例结果,使读者对贪婪技术及其应用有了更深入的理解。
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
|
5月前
|
自然语言处理 算法
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
69 0
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
|
5月前
|
算法
路径规划算法 - 求解最短路径 - Dijkstra(迪杰斯特拉)算法
路径规划算法 - 求解最短路径 - Dijkstra(迪杰斯特拉)算法
123 0
|
14天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
146 80
|
2天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
2天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
1天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。

热门文章

最新文章