阿里云Kubernetes实战2–搭建基础服务

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
传统型负载均衡 CLB,每月750个小时 15LCU
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
简介: 前言: 在系列的第一篇文章中,我已经介绍过如何在阿里云基于kubeasz搭建K8S集群,通过在K8S上部署gitlab并暴露至集群外来演示服务部署与发现的流程。文章写于4月,忙碌了小半年后,我才有时间把后续部分补齐。

前言:

在系列的第一篇文章中,我已经介绍过如何在阿里云基于kubeasz搭建K8S集群,通过在K8S上部署gitlab并暴露至集群外来演示服务部署与发现的流程。文章写于4月,忙碌了小半年后,我才有时间把后续部分补齐。系列会分为三篇,本篇将继续部署基础设施,如jenkins、harbor、efk等,以便为第三篇项目实战做好准备。

需要说明的是,阿里云迭代的实在是太快了,2018年4月的时候,由于SLB不支持HTTP跳转HTTPS,迫不得已使用了Ingress-Nginx来做跳转控制。但在4月底的时候,SLB已经在部分地区如华北、国外节点支持HTTP跳转HTTPS。到了5月更是全节点支持。这样以来,又简化了Ingress-Nginx的配置。


一、Jenkins

一般情况下,我们搭建一个Jenkins用于持续集成,那么所有的Jobs都会在这一个Jenkins上进行build,如果Jobs数量较多,势必会引起Jenkins资源不足导致各种问题出现。于是,对于项目较多的部门、公司使用Jenkins,需要搭建Jenkins集群,也就是增加Jenkins Slave来协同工作。

但是增加Jenkins Slave又会引出新的问题,资源不能按需调度。Jobs少的时候资源闲置,而Jobs突然增多仍然会资源不足。我们希望能动态分配Jenkins Slave,即用即拿,用完即毁。这恰好符合K8S中Pod的特性。所以这里,我们在K8S中搭建一个Jenkins集群,并且是Jenkins Slave in Pod.

1.1 准备镜像

我们需要准备两个镜像,一个是Jenkins Master,一个是Jenkins Slave:

Jenkins Master

可根据实际需求定制Dockerfile

FROM jenkins/jenkins:latest

USER root

# Set jessie source
RUN cecho '' > /etc/apt/sources.list.d/jessie-backports.list \
  && echo "deb http://mirrors.aliyun.com/debian jessie main contrib non-free" > /etc/apt/sources.list \
  && echo "deb http://mirrors.aliyun.com/debian jessie-updates main contrib non-free" >> /etc/apt/sources.list \
  && echo "deb http://mirrors.aliyun.com/debian-security jessie/updates main contrib non-free" >> /etc/apt/sources.list

# Update
RUN apt-get update && apt-get install -y libltdl7 && apt-get clean

# INSTALL KUBECTL
RUN curl -LO https://storage.googleapis.com/kubernetes-release/release/`curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt`/bin/linux/amd64/kubectl && \
    chmod +x ./kubectl && \
    mv ./kubectl /usr/local/bin/kubectl

# Set time zone
RUN rm -rf /etc/localtime && cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && \
    echo 'Asia/Shanghai' > /etc/timezone

# Skip setup wizard、 TimeZone and CSP
ENV JAVA_OPTS="-Djenkins.install.runSetupWizard=false -Duser.timezone=Asia/Shanghai -Dhudson.model.DirectoryBrowserSupport.CSP=\"default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval'; style-src 'self' 'unsafe-inline';\""                                                

Jenkins Salve

一般来说只需要安装kubelet就可以了

FROM jenkinsci/jnlp-slave

USER root

# INSTALL KUBECTL
RUN curl -LO https://storage.googleapis.com/kubernetes-release/release/`curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt`/bin/linux/amd64/kubectl && \
    chmod +x ./kubectl && \
    mv ./kubectl /usr/local/bin/kubectl

生成镜像后可以push到自己的镜像仓库中备用

1.2 部署Jenkins Master

为了部署Jenkins、Jenkins Slave和后续的Elastic Search,建议ECS的最小内存为8G

在K8S上部署Jenkins的yaml参考如下:

apiVersion: v1
kind: Namespace
metadata:
  name: jenkins-ci
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: jenkins-ci
  namespace: jenkins-ci
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
  name: jenkins-ci
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: cluster-admin
subjects:
- kind: ServiceAccount
  name: jenkins-ci
  namespace: jenkins-ci
---
# 设置两个pv,一个用于作为workspace,一个用于存储ssh key
apiVersion: v1
kind: PersistentVolume
metadata:
    name: jenkins-home
    labels:
      release: jenkins-home
    namespace: jenkins-ci
spec:
    # workspace 大小为10G
    capacity:
      storage: 10Gi
    accessModes:
      - ReadWriteMany
    persistentVolumeReclaimPolicy: Retain
    # 使用阿里云NAS,需要注意,必须先在NAS创建目录 /jenkins/jenkins-home
    nfs:
      path: /jenkins/jenkins-home
      server: xxxx.nas.aliyuncs.com
---
apiVersion: v1
kind: PersistentVolume
metadata:
    name: jenkins-ssh
    labels:
      release: jenkins-ssh
    namespace: jenkins-ci
spec:
    # ssh key 只需要1M空间即可
    capacity:
      storage: 1Mi
    accessModes:
      - ReadWriteMany
    persistentVolumeReclaimPolicy: Retain
    # 不要忘了在NAS创建目录 /jenkins/ssh
    nfs:
      path: /jenkins/ssh
      server: xxxx.nas.aliyuncs.com
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: jenkins-home-claim
  namespace: jenkins-ci
spec:
  accessModes:
    - ReadWriteMany
  resources:  
    requests:
      storage: 10Gi
  selector:
    matchLabels:
      release: jenkins-home
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: jenkins-ssh-claim
  namespace: jenkins-ci
spec:
  accessModes:
    - ReadWriteMany
  resources:  
    requests:
      storage: 1Mi
  selector:
    matchLabels:
      release: jenkins-ssh
---
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: jenkins
 namespace: jenkins-ci
spec:
 replicas: 1
 template:
  metadata:
   labels:
    name: jenkins
  spec:
   serviceAccount: jenkins-ci
   containers:
   - name: jenkins
     imagePullPolicy: Always
     # 使用1.1小结创建的 Jenkins Master 镜像
     image: xx.xx.xx/jenkins:1.0.0
     # 资源管理,详见第二章
     resources:
      limits:
        cpu: 1
        memory: 2Gi
      requests:
        cpu: 0.5
        memory: 1Gi
     # 开放8080端口用于访问,开放50000端口用于Jenkins Slave和Master的通讯
     ports:
       - containerPort: 8080
       - containerPort: 50000
     readinessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 40
      periodSeconds: 20
     securityContext:
       privileged: true
     volumeMounts:
         # 映射K8S Node的docker,也就是docker outside docker,这样就不需要在Jenkins里面安装docker
       - mountPath: /var/run/docker.sock
         name: docker-sock
       - mountPath: /usr/bin/docker
         name: docker-bin
       - mountPath: /var/jenkins_home
         name: jenkins-home
       - mountPath: /root/.ssh
         name: jenkins-ssh
   volumes:
     - name: docker-sock
       hostPath:
         path: /var/run/docker.sock
     - name: docker-bin
       hostPath:
         path: /opt/kube/bin/docker
     - name: jenkins-home
       persistentVolumeClaim:
          claimName: jenkins-home-claim
     - name: jenkins-ssh
       persistentVolumeClaim:
          claimName: jenkins-ssh-claim
---
kind: Service
apiVersion: v1
metadata:
  name: jenkins-service
  namespace: jenkins-ci
spec:
  type: NodePort
  selector:
    name: jenkins
  # 将Jenkins Master的50000端口作为NodePort映射到K8S的30001端口
  ports:
  - name: jenkins-agent
    port: 50000
    targetPort: 50000
    nodePort: 30001
  - name: jenkins
    port: 8080
    targetPort: 8080
---
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: jenkins-ingress
 namespace: jenkins-ci
 annotations:
      nginx.ingress.kubernetes.io/proxy-body-size: "0"
spec:
  rules:
  # 设置Ingress-Nginx域名和端口
  - host: xxx.xxx.com
    http:
      paths:
      - path: /
        backend:
          serviceName: jenkins-service
          servicePort: 8080

最后附一下SLB的配置

这样就可以通过域名xxx.xxx.com访问Jenkins,并且可以通过xxx.xxx.com:50000来链接集群外的Slave。当然,集群内的Slave直接通过serviceName-namespace:50000访问就可以了

1.3 配置Jenkins Slave

以管理员进入Jenkins,安装”Kubernetes”插件,然后进入系统设置界面,”Add a new cloud” – “Kubernetes”,配置如下:

  • Kubernetes URL:https://kubernetes.default.svc.cluster.local
  • Jenkins URL:http://jenkins-service.jenkins-ci:8080
  • Test Connection 测试看连接是否成功
  • Images – Add Pod Template – Kubernetes Pod Template
  • 注意设置Name为”jnlp-agent”,其他按需填写,设置完成后进入Advanced
  • 根据需要设置资源管理,也就是说限制Jenkins Slave in Pod所占用的CPU和内存,详见第二章
  • 设置Volume,同样采用docker outside docker,将K8S Node的docker为Jenkins Slave Pod所用;设置Jenkins Slave的工作目录为NAS
  • 设置最多允许多少个Jenkins Slave Pod 同时运行,然后进入Advanced
  • 填写Service Account,与部署Jenkins Master的yaml文件中的Service Account保持一致;如果你的Jenkins Slave Image是私有镜像,还需要设置ImagePullSecrets
  • Apply并完成

1.4 测试验证

我们可以写一个FreeStyle Project的测试Job:

测试运行:

可以看到名为”jnlp-agent-xxxxx”的Jenkins Salve被创建,Job build完成后又消失,即为正确完成配置。

二、K8S资源管理

在第一章中,先后提到两次资源管理,一次是Jenkins Master的yaml,一次是Kubernetes Pod Template给Jenkins Slave 配置。Resource的控制是K8S的基础配置之一。但一般来说,用到最多的就是以下四个:

  • Request CPU:意为某Node剩余CPU大于Request CPU,才会将Pod创建到该Node上
  • Limit CPU:意为该Pod最多能使用的CPU为Limit CPU
  • Request Memory:意为某Node剩余内存大于Request Memory,才会将Pod创建到该Node上
  • Limit Memory:意为该Pod最多能使用的内存为Limit Memory

比如在我这个项目中,Gitlab至少需要配置Request Memory为3G,对于Elastic Search的Request Memory也至少为2.5 G.

其他服务需要根据K8S Dashboard中的监控插件结合长时间运行后给出一个合理的Resource控制范围。

三、Harbor

在K8S中跑CI,大致流程是Jenkins将Gitlab代码打包成Image,Push到Docker Registry中,随后Jenkins通过yaml文件部署应用,Pod的Image从Docker Registry中Pull.也就是说到目前为止,我们还缺一个Docker Registry才能准备好所有CI需要的基础软件。

利用阿里云的镜像仓库或者Docker HUB可以节省硬件成本,但考虑数据安全、传输效率和操作易用性,还是希望自建一个Docker Registry. 可选的方案并不多,官方提供的Docker Registry v2轻量简洁,vmware的Harbor功能更丰富。

Harbor提供了一个界面友好的UI,支持镜像同步,这对于DevOps尤为重要。Harbor官方提供了Helm方式在K8S中部署。但我考虑Harbor占用的资源较多,从节省硬件成本来说,把Harbor放到了K8S Master上(Master节点不会被调度用于部署Pod,所以大部分空间资源没有被利用)。当然这不是一个最好的方案,但它是最适合我们目前业务场景的方案。

在Master节点使用docker compose部署Harbor的步骤如下:

  • 192.168.0.1安装docker-compose
    pip install docker-compose
  • 192.168.0.1 data目录挂载NAS路径(harbor的volume默认映射到宿主机的/data目录,所以我们把宿主机的/data目录挂载为NAS即可实现用NAS作为harbor的volume)
    mkdir /data
    mount -t nfs -o vers=4.0 xxx.xxx.com:/harbor /data
  • 参考https://github.com/vmware/harbor/blob/master/docs/installation_guide.md 安装
    • 根据需要下载指定版本的 Harbor offline installer
    • 解压后配置harbor.cfg
      # 域名
      hostname = xx.xx.com
      # 协议,这里可以使用http可以免去配置ssl_cert,通过SLB暴露至集群外再加上ssh即可
      ui_url_protocol = http
      # 邮箱配置
      email_identity = rfc2595
      email_server =  xx
      email_server_port = xx
      email_username = xx
      email_password = xx
      email_from = xx
      email_ssl = xx
      email_insecure = xx
      # admin账号默认密码
      harbor_admin_password = xx
    • 修改docker-compose.yaml中的端口映射,这里将容器端口映射到宿主机的23280端口
      proxy:
          image: vmware/nginx-photon:v1.5.0
          container_name: nginx
          restart: always
          volumes:
            - ./common/config/nginx:/etc/nginx:z
          networks:
            - harbor
          ports:
           - 23280:80
           #- 443:443
           #- 4443:4443
          depends_on:
            - mysql
            - registry
            - ui
            - log
          logging:
            driver: "syslog"
            options:
              syslog-address: "tcp://127.0.0.1:1514"
              tag: "proxy"
    • 运行install.sh
  • 修改 kubeasz的 roles/docker/files/daemon.json加入”insecure-registries”节点,如下所示
    {
      "registry-mirrors": ["https://kuamavit.mirror.aliyuncs.com", "https://registry.docker-cn.com", "https://docker.mirrors.ustc.edu.cn"], 
      "insecure-registries": ["192.168.0.1:23280"],
      "max-concurrent-downloads": 10,
      "log-driver": "json-file",
      "log-level": "warn",
      "log-opts": {
        "max-size": "10m",
        "max-file": "3"
      }
    }

    重新安装kubeasz的docker

    ansible-playbook 03.docker.yml

    这样在集群内的任何一个节点就可以通过http协议192.168.0.1:23280 访问harbor

  • 开机启动
    vi /etc/rc.local
    # 加入如下内容
    # mount -t nfs -o vers=4.0 xxxx.com:/harbor /data
    # cd /etc/ansible/heygears/harbor
    # sudo docker-compose up -d
    chmod +x /etc/rc.local
  • 设置Secret(K8S部署应用时使用Secret拉取镜像,详见系列教程第三篇)在K8S集群任意一台机器使用命令
    kubectl create secret docker-registry regcred --docker-server=192.168.0.1:23280 --docker-username=xxx --docker-password=xxx --docker-email=xxx
  • 设置SLB(如果仅在内网使用,不设置SLB和DNS也可以)
  • 登陆Harbor管理页面
  • 在集群内通过docker login 192.168.0.1:23280验证Harbor是否创建成功

四、EFK

最后我们来给集群加上日志系统。

项目中常用的日志系统多数是Elastic家族的ELK,外加Redis或者Kafka作为缓冲队列。由于Logstash需要运行在java环境下,且占用空间大,配置相对复杂,随着Elastic家族的产品逐渐丰富,Logstash开始慢慢偏向日志解析、过滤、格式化等方面,所以并不太适合在容器环境下的日志收集。K8S官方给出的方案是EFK,其中F指的是Fluentd,一个用Ruby写的轻量级日志收集工具。对比Logstash来说,支持的插件少一些。

容器日志的收集方式不外乎以下四种:

  • 容器外收集。将宿主机的目录挂载为容器的日志目录,然后在宿主机上收集。
  • 容器内收集。在容器内运行一个后台日志收集服务。
  • 单独运行日志容器。单独运行一个容器提供共享日志卷,在日志容器中收集日志。
  • 网络收集。容器内应用将日志直接发送到日志中心,比如java程序可以使用log4j2转换日志格式并发送到远端。
  • 通过修改docker的–log-driver。可以利用不同的driver把日志输出到不同地方,将log-driver设置为syslog、fluentd、splunk等日志收集服务,然后发送到远端。

docker默认的driver是json-driver,容器输出到控制台的日志,都会以 *-json.log 的命名方式保存在 /var/lib/docker/containers/ 目录下。所以EFK的日志策略就是在每个Node部署一个Fluentd,读取/var/lib/docker/containers/ 目录下的所有日志,传输到ES中。这样做有两个弊端,一方面不是所有的服务都会把log输出到控制台;另一方面不是所有的容器都需要收集日志。我们更想定制化的去实现一个轻量级的日志收集。所以综合各个方案,还是采取了网上推荐的以FileBeat作为日志收集的“EFK”架构方案。

FileBeat用Golang编写,输出为二进制文件,不存在依赖。占用空间极小,吞吐率高。但它的功能相对单一,仅仅用来做日志收集。所以对于有需要的业务场景,可以用FileBeat收集日志,Logstash格式解析,ES存储,Kibana展示。

使用FileBeat收集容器日志的业务逻辑如下:

也就是说我们利用K8S的Pod的临时目录{}来实现Container的数据共享,举个例子:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: test
  labels:
    app: test
spec:
  replicas: 2
  strategy:
    type: Recreate
  template:
    metadata:
      labels:
        app: test
    spec:
      containers:
      - image:  #appImage 
        name: app
        volumeMounts:
        - name: log-volume
          mountPath: /var/log/app/  #app log path
      - image:  #filebeatImage
        name: filebeat
        args: [
          "-c", "/etc/filebeat.yml"
        ]
        securityContext:
          runAsUser: 0
        volumeMounts:
        - name: config
          mountPath: /etc/filebeat.yml
          readOnly: true
          subPath: filebeat.yml
        - name: log-volume
          mountPath: /var/log/container/
      volumes:
      - name: config
        configMap:
          defaultMode: 0600
          name: filebeat-config
      - name: log-volume 
        emptyDir: {} #利用{}实现数据交互
      imagePullSecrets:
      - name: regcred
---
apiVersion: v1
kind: ConfigMap
metadata:
  name: filebeat-config
  namespace: test
  labels:
    app: filebeat
data:
  filebeat.yml: |-
    filebeat.inputs:
    - type: log
      enabled: true
      paths:
        - /var/log/container/*.log #FileBeat读取log的源
    output.elasticsearch:
      hosts: ["xx.xx.xx:9200"]
    tags: ["test"] #log tag

实现这种FileBeat作为日志收集的“EFK”系统,只需要在K8S集群中搭建好ES和Kibana即可,FileBeat是随着应用一起创建,无需提前部署。搭建ES和Kibana的方式可参考K8S官方文档,我也进行了一个简单整合:

ES:

# RBAC authn and authz
apiVersion: v1
kind: ServiceAccount
metadata:
  name: elasticsearch-logging
  namespace: kube-system
  labels:
    k8s-app: elasticsearch-logging
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: elasticsearch-logging
  labels:
    k8s-app: elasticsearch-logging
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
rules:
- apiGroups:
  - ""
  resources:
  - "services"
  - "namespaces"
  - "endpoints"
  verbs:
  - "get"
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  namespace: kube-system
  name: elasticsearch-logging
  labels:
    k8s-app: elasticsearch-logging
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
subjects:
- kind: ServiceAccount
  name: elasticsearch-logging
  namespace: kube-system
  apiGroup: ""
roleRef:
  kind: ClusterRole
  name: elasticsearch-logging
  apiGroup: ""
---
apiVersion: v1
kind: PersistentVolume
metadata:
    name: es-pv-0
    labels:
      release: es-pv
    namespace: kube-system
spec:
    capacity:
      storage: 20Gi
    accessModes:
      - ReadWriteMany
    volumeMode: Filesystem
    persistentVolumeReclaimPolicy: Recycle
    storageClassName: "es-storage-class"
    nfs:
      path: /es/0
      server: xxx.nas.aliyuncs.com  # 用NAS来作为ES的数据存储,需要提前在NAS创建目录/es/0
---
apiVersion: v1
kind: PersistentVolume
metadata:
    name: es-pv-1
    labels:
      release: es-pv
    namespace: kube-system
spec:
    capacity:
      storage: 20Gi
    accessModes:
      - ReadWriteMany
    volumeMode: Filesystem
    persistentVolumeReclaimPolicy: Recycle
    storageClassName: "es-storage-class"
    nfs:
      path: /es/1
      server: xxx.nas.aliyuncs.com   # 用NAS来作为ES的数据存储,需要提前在NAS创建目录/es/1
---
# Elasticsearch deployment itself
apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: elasticsearch-logging
  namespace: kube-system
  labels:
    k8s-app: elasticsearch-logging
    version: v5.6.4
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
spec:
  serviceName: elasticsearch-logging
  replicas: 2
  selector:
    matchLabels:
      k8s-app: elasticsearch-logging
      version: v5.6.4
  template:
    metadata:
      labels:
        k8s-app: elasticsearch-logging
        version: v5.6.4
        kubernetes.io/cluster-service: "true"
    spec:
      serviceAccountName: elasticsearch-logging
      containers:
      - image: registry-vpc.cn-shenzhen.aliyuncs.com/heygears/elasticsearch:5.6.4 # 可替换成私有仓库
        name: elasticsearch-logging
        resources:
          # need more cpu upon initialization, therefore burstable class
          limits:
            cpu: 1
            memory: 2.5Gi
          requests:
            cpu: 0.8
            memory: 2Gi
        ports:
        - containerPort: 9200
          name: db
          protocol: TCP
        - containerPort: 9300
          name: transport
          protocol: TCP
        volumeMounts:
        - name: elasticsearch-logging
          mountPath: /data
        env:
        - name: "NAMESPACE"
          valueFrom:
            fieldRef:
              fieldPath: metadata.namespace
      # Elasticsearch requires vm.max_map_count to be at least 262144.
      # If your OS already sets up this number to a higher value, feel free
      # to remove this init container.
      initContainers:
      - image: alpine:3.6
        command: ["/sbin/sysctl", "-w", "vm.max_map_count=262144"]
        name: elasticsearch-logging-init
        securityContext:
          privileged: true
  volumeClaimTemplates:
  - metadata:
      name: elasticsearch-logging
    spec:
      accessModes: [ "ReadWriteMany" ]
      storageClassName: "es-storage-class"
      resources:
        requests:
          storage: 20Gi
---
apiVersion: v1
kind: Service
metadata:
  name: elasticsearch-logging
  namespace: kube-system
  labels:
    k8s-app: elasticsearch-logging
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/name: "Elasticsearch"
spec:
  type: NodePort
  ports:
  - port: 9200
    protocol: TCP
    targetPort: db
    nodePort: xxx  # 以NodePort方式暴露端口,供集群外访问ES
  selector:
    k8s-app: elasticsearch-logging

Kibana:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: kibana-logging
  namespace: kube-system
  labels:
    k8s-app: kibana-logging
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
spec:
  replicas: 1
  selector:
    matchLabels:
      k8s-app: kibana-logging
  template:
    metadata:
      labels:
        k8s-app: kibana-logging
    spec:
      containers:
      - name: kibana-logging
        image: registry-vpc.cn-shenzhen.aliyuncs.com/heygears/kibana:5.6.4 # 也可替换成自己的私有仓库
        resources:
          # need more cpu upon initialization, therefore burstable class
          limits:
            cpu: 1
            memory: 1.5Gi
          requests:
            cpu: 0.8
            memory: 1.5Gi
        env:
          - name: ELASTICSEARCH_URL
            value: http://elasticsearch-logging:9200
          - name: SERVER_BASEPATH
            value: /api/v1/namespaces/kube-system/services/kibana-logging/proxy
          - name: XPACK_MONITORING_ENABLED
            value: "false"
          - name: XPACK_SECURITY_ENABLED
            value: "false"
        ports:
        - containerPort: 5601
          name: ui
          protocol: TCP
---
apiVersion: v1
kind: Service
metadata:
  name: kibana-logging
  namespace: kube-system
  labels:
    k8s-app: kibana-logging
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/name: "Kibana"
spec:
  ports:
  - port: 5601
    protocol: TCP
    targetPort: ui
  selector:
    k8s-app: kibana-logging

本文转自中文社区-阿里云Kubernetes实战2–搭建基础服务

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
8天前
|
弹性计算 人工智能 Serverless
阿里云ACK One:注册集群云上节点池(CPU/GPU)自动弹性伸缩,助力企业业务高效扩展
在当今数字化时代,企业业务的快速增长对IT基础设施提出了更高要求。然而,传统IDC数据中心却在业务存在扩容慢、缩容难等问题。为此,阿里云推出ACK One注册集群架构,通过云上节点池(CPU/GPU)自动弹性伸缩等特性,为企业带来全新突破。
|
25天前
|
专有云 Serverless 持续交付
亚太唯一,阿里云再度入选Gartner®容器管理魔力象限领导者
Gartner正式发布 2024《容器管理魔力象限》报告,阿里云再度成为中国唯一一家入选「领导者象限」的科技公司。
|
30天前
|
Prometheus Kubernetes 监控
k8s部署针对外部服务器的prometheus服务
通过上述步骤,您不仅成功地在Kubernetes集群内部署了Prometheus,还实现了对集群外服务器的有效监控。理解并实施网络配置是关键,确保监控数据的准确无误传输。随着监控需求的增长,您还可以进一步探索Prometheus生态中的其他组件,如Alertmanager、Grafana等,以构建完整的监控与报警体系。
116 60
|
1月前
|
Prometheus Kubernetes 监控
k8s部署针对外部服务器的prometheus服务
通过上述步骤,您不仅成功地在Kubernetes集群内部署了Prometheus,还实现了对集群外服务器的有效监控。理解并实施网络配置是关键,确保监控数据的准确无误传输。随着监控需求的增长,您还可以进一步探索Prometheus生态中的其他组件,如Alertmanager、Grafana等,以构建完整的监控与报警体系。
181 62
|
1月前
|
Prometheus Kubernetes 监控
k8s学习--kubernetes服务自动伸缩之水平伸缩(pod副本伸缩)HPA详细解释与案例应用
k8s学习--kubernetes服务自动伸缩之水平伸缩(pod副本伸缩)HPA详细解释与案例应用
k8s学习--kubernetes服务自动伸缩之水平伸缩(pod副本伸缩)HPA详细解释与案例应用
|
20天前
|
人工智能 专有云 Serverless
亚太唯一!阿里云再度入选Gartner®容器管理魔力象限领导者
亚太唯一!阿里云再度入选Gartner®容器管理魔力象限领导者
94 2
|
1月前
|
负载均衡 Kubernetes 区块链
随机密码生成器+阿里k8s负载均衡型服务加证书方法+移动终端设计+ico生成器等
随机密码生成器+阿里k8s负载均衡型服务加证书方法+移动终端设计+ico生成器等
48 1
|
1月前
|
Kubernetes 应用服务中间件 nginx
k8s学习--kubernetes服务自动伸缩之水平收缩(pod副本收缩)VPA策略应用案例
k8s学习--kubernetes服务自动伸缩之水平收缩(pod副本收缩)VPA策略应用案例
|
1月前
|
Kubernetes 监控 调度
k8s学习--kubernetes服务自动伸缩之垂直伸缩(资源伸缩)VPA详细解释与安装
k8s学习--kubernetes服务自动伸缩之垂直伸缩(资源伸缩)VPA详细解释与安装
|
1月前
|
Kubernetes 应用服务中间件 nginx
k8s基础使用--使用k8s部署nginx服务
本文介绍了Kubernetes中核心概念Deployment、Pod与Service的基本原理及应用。Pod作为最小调度单元,用于管理容器及其共享资源;Deployment则负责控制Pod副本数量,确保其符合预期状态;Service通过标签选择器实现Pod服务的负载均衡与暴露。此外,还提供了具体操作步骤,如通过`kubectl`命令创建Deployment和Service,以及如何验证其功能。实验环境包括一台master节点和两台worker节点,均已部署k8s-1.27。
138 1
下一篇
无影云桌面