二叉树中用到的基本算法(叶子,度,遍历)

简介: 二叉树是数据结构中比较有意思的部分 二叉树有两种存储形式 1: 线性表 2:指针 其实链表是很重要的,二叉树就可以看为多条链表组合在一块。 在这里主要是指针来实现的。

二叉树是数据结构中比较有意思的部分
二叉树有两种存储形式
1: 线性表
2:指针

其实链表是很重要的,二叉树就可以看为多条链表组合在一块。
在这里主要是指针来实现的。 这里基本的算法都用到了递归实现

那在二叉树 中重要的算法如下:
a:创建一个二叉树(采用前序,活着中序,活着后序)
b:遍历二叉树(前序,中序,后序)
c:叶子结点的个数
d:树的高度
e:度为一的节点数
f:度为二的节点数
g:有分枝的节点数
h:查找某个节点

可能刚开始不能理解递归,找一个二叉树的图像,根据程序走一遍就基本能理解。


img_a47816174cf34c9e53ef52f7395653ab.png

那这个二叉树的前序遍历为。fcadbehgm
中序遍历为:acbdfehmg
后序遍历为:abdchmgef


//
// main.cpp
// 二叉树,中序遍历
//
// Created by 刘小成 on 2018/10/20.
// Copyright © 2018 刘晨. All rights reserved.
//
include<iostream>
using namespace std;
typedef struct bitNode{
char data;
bitNode *lChild;
bitNode *rChild;
}bitNode;
class Tree{
private:
bitNode *head;
void creatBitNode(bitNode *& t);//创建一棵树
void orderBitNode(bitNode *t);//中序遍历
void inorderBitNode(bitNode *t);//后序遍历
int countLeaf(bitNode *t);//叶子数量
int heightBitNodeTree(bitNode *t);//树高
int oneBitNode(bitNode *t);//度为一 的节点
int twoBitNode(bitNode *t);//度为二的节点
int branchBitNode(bitNode *t);//有分枝的节点
public:
Tree(){head = NULL;}
void creatTree(){
    bitNode *temp;
    creatBitNode(temp);
    head = temp;
}
void orderTree(){
    bitNode *t = head;
    cout<<"后序遍历的结果是: \t";
    orderBitNode(t);
    cout<<endl;
}

void inorderTree(){
    bitNode *t = head;
    cout<<"中序遍历的结果是: \t";
    inorderBitNode(t);
    cout<<endl;
}
void countLeafTree(){
    bitNode *t = head;
    cout<<"叶子节点的个数是:\t"<< countLeaf(t)<<endl;
}
void heightTree(){
    bitNode *t = head;
   cout<<"树的高度是:\t"<< heightBitNodeTree(t)<<endl;
}
void oneBitNodeTree(){
    bitNode *t = head;
    cout<<"度为一的节点个数是:\t"<<oneBitNode(t)<<endl;
}
void twoBitNodeTree(){
    bitNode *t = head;
    cout<<"度为二的节点个数是:\t"<<twoBitNode(t)<<endl;
}
void branchTree(){
    bitNode *t = head;
    cout<<"有分枝的节点个数是:\t"<<branchBitNode(t)<<endl;
}
};
void Tree::creatBitNode(bitNode *&t){
char data;
cin>>data;
if(data == '.') t=NULL;
if(data != '.'){
t = new bitNode;
t->data = data;
creatBitNode(t->lChild);
creatBitNode(t->rChild);
}
}
void Tree::orderBitNode(bitNode *t){
if(t == NULL) return;
else {
orderBitNode(t->lChild);
orderBitNode(t->rChild);
cout<<t->data;
}
}
void Tree::inorderBitNode(bitNode *t){
if (t == NULL) return ;
if(t != NULL){
inorderBitNode(t->lChild);
cout<<t->data;
inorderBitNode(t->rChild);
}
}
int Tree::countLeaf(bitNode *t){
if(t == NULL) return 0;
else {
int m = countLeaf(t->lChild);
int n = countLeaf(t->rChild);
if( m+n == 0) return 1;
else return m+n;
}
}
int Tree::heightBitNodeTree(bitNode *t){
if(t == NULL) return 0;
else{
int m = 1+heightBitNodeTree(t->lChild);
int n = 1+heightBitNodeTree(t->rChild);
return m>n ? m:n;
}
}
int Tree::oneBitNode(bitNode *t){
if(t==NULL) return 0;
else {
if( (t->lChild !=NULL && t->rChild == NULL) || (t->lChild == NULL && t->rChild !=NULL) ){
int m = oneBitNode(t->lChild);
int n = oneBitNode(t->rChild);
return 1+m+n;
}
else{
int m = oneBitNode(t->lChild);
int n = oneBitNode(t->rChild);
return m+n;
}
}
}
int Tree::twoBitNode(bitNode *t){
if( t== NULL) return 0;
else{
if( t->lChild != NULL && t->rChild != NULL){
int m = twoBitNode(t->lChild);
int n = twoBitNode(t->rChild);
return 1+m+n;
}
else{
int m = twoBitNode(t->lChild);
int n = twoBitNode(t->rChild);
return m+n;
}
}
}
int Tree:: branchBitNode(bitNode *t){
if (t == NULL) return 0;
else{
    if(t->lChild != NULL || t->rChild != NULL){
        int m = branchBitNode(t->lChild);
        int n = branchBitNode(t->rChild);
        return 1+m+n;
    }
    else{
        int m = branchBitNode(t->lChild);
        int n = branchBitNode(t->rChild);
        return m+n;
    }
}
}
int main(int argc, const char * argv[]) {
cout<<"先序创建一棵树\t\t 用"."表示NULL \n";
cout<<"输入\n";
Tree a ;
a.creatTree();
a.inorderTree();
a.orderTree();
a.countLeafTree();
a.heightTree();
a.oneBitNodeTree();
a.twoBitNodeTree();
a.branchTree();
return 0;
}

在私有方法里面创建递归函数,在公有函数里面调用递归函数。这样做的目的是不会产生多余的变量,变量连接紧密。

在创建递归函数的时候要考虑好函数的出口,好让函数可以返回。然后就要考虑递归函数里面递归的内容,将问题细小化。比如在统计叶子结点有多少个,
那函数的出口就是 这个节点是不是为空,若是空 ,就返回,
函数的递归内容就是。 对一个节点来说,先统计一个它的左子树的节点,在统计一下右子树的节点, 如果两边都是0,那他就是叶子结点,那就叶子结点,返回1,否则就不是叶子结点, 那就返回这个树的左边叶子结点数+右边的节点数。

那在对于树的高度函数来讲

img_50f5a2b07a168c2226b6b5db81a98931.png
image.png

在创建二叉树的时候要规定一个输入值,当这个值输入的时候那他就NULL。在上面中 作者规定的是“.”,

二叉的这些算法中对于递归的要求比较高。

那对于二叉树的度为一的节点的递归函数思想如下:

img_af60d0b0010211f5d1c1a19acc14d840.png
image.png

那度为二的节点其实和上面的思路是一样的。还有有分枝的节点。

相关文章
|
3天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
8 0
|
28天前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
16 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
28天前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
17 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
1月前
|
存储 算法
【二叉树】—— 算法题
【二叉树】—— 算法题
【二叉树】—— 算法题
|
28天前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
22 0
|
3月前
|
算法
【初阶数据结构篇】二叉树算法题
二叉树是否对称,即左右子树是否对称.
25 0
|
15天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
2天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
1天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。