python-进程池与线程池,协程

简介: 一、进程池与线程池 实现并发的手段有两种,多线程和多进程。注:并发是指多个任务看起来是同时运行的。主要是切换+保存状态。 当我们需要执行的并发任务大于cpu的核数时,我们需要知道一个操作系统不能无限的开启进程和线程,通常有几个核就开几个进程,如果进程开启过多,就无法充分利用cpu多核的优势,效率反而会下降。

一、进程池与线程池

实现并发的手段有两种,多线程和多进程。注:并发是指多个任务看起来是同时运行的。主要是切换+保存状态。

当我们需要执行的并发任务大于cpu的核数时,我们需要知道一个操作系统不能无限的开启进程和线程,通常有几个核就开几个进程,如果进程开启过多,就无法充分利用cpu多核的优势,效率反而会下降。这个时候就引入了进程池线程池的概念。

池的功能就是限制启动的进程数或线程数

concurent.future模块:

concurrent.futures模块提供了高度封装的异步调用接口

ProcessPoolExecutor: 进程池,提供异步调用

p = ProcessPoolExecutor(max_works)对于进程池如果不写max_works:默认的是cpu的数目,默认是4个

ThreadPoolExecutor:线程池,提供异步调用   
p = ThreadPoolExecutor(max_works)对于线程池如果不写max_works:默认的是cpu的数目*5

 

补充:

提交任务的两种方式:
# 同步调用:提交完一个任务之后,就在原地等待,等待任务完完整整地运行完毕拿到结果后,再执行下一行代码,会导致任务是串行执行的
# 异步调用:提交完一个任务之后,不在原地等待,结果???,而是直接执行下一行代码,会导致任务是并发执行的

进程池从无到有创建进程后,然后会固定使用进程池里创建好的进程去执行所有任务,不会开启其他进程

# 基本方法
#submit(fn, *args, **kwargs)
异步提交任务

#map(func, *iterables, timeout=None, chunksize=1) 
取代for循环submit的操作

#shutdown(wait=True) 
相当于进程池的pool.close()+pool.join()操作
wait=True,等待池内所有任务执行完毕回收完资源后才继续
wait=False,立即返回,并不会等待池内的任务执行完毕
但不管wait参数为何值,整个程序都会等到所有任务执行完毕
submit和map必须在shutdown之前

#result(timeout=None)
取得结果

#add_done_callback(fn)
回调函数
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
import time,random,os
import requests


def get(url):
    print('%s GET %s' %(os.getpid(),url))
    time.sleep(3)
    response=requests.get(url)
    if response.status_code == 200:
        res=response.text
    else:
        res='下载失败'
    return res

def parse(future):
    time.sleep(1)
    res=future.result()
    print('%s 解析结果为%s' %(os.getpid(),len(res)))

if __name__ == '__main__':
    urls=[
        'https://www.baidu.com',
        'https://www.sina.com.cn',
        'https://www.tmall.com',
        'https://www.jd.com',
        'https://www.python.org',
        'https://www.openstack.org',
        'https://www.baidu.com',
        'https://www.baidu.com',
        'https://www.baidu.com',

    ]

    p=ProcessPoolExecutor(9)

    start=time.time()
    for url in urls:
        future=p.submit(get,url)
        # 异步调用:提交完一个任务之后,不在原地等待,而是直接执行下一行代码,会导致任务是并发执行的,,结果futrue对象会在任务运行完毕后自动传给回调函数
        future.add_done_callback(parse)  #parse会在任务运行完毕后自动触发,然后接收一个参数future对象

    p.shutdown(wait=True)


    print('',time.time()-start)
    print('',os.getpid())
test

线程池与进程池相比 他们的同步执行和异步执行是一样的:

from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
from threading import current_thread
import time,random,os
import requests


def get(url):
    print('%s GET %s' %(current_thread().name,url))
    time.sleep(3)
    response=requests.get(url)
    if response.status_code == 200:
        res=response.text
    else:
        res='下载失败'
    return res

def parse(future):
    time.sleep(1)
    res=future.result()
    print('%s 解析结果为%s' %(current_thread().name,len(res)))

if __name__ == '__main__':
    urls=[
        'https://www.baidu.com',
        'https://www.sina.com.cn',
        'https://www.tmall.com',
        'https://www.jd.com',
        'https://www.python.org',
        'https://www.openstack.org',
        'https://www.baidu.com',
        'https://www.baidu.com',
        'https://www.baidu.com',

    ]

    p=ThreadPoolExecutor(4)
    
    for url in urls:
        future=p.submit(get,url)
        future.add_done_callback(parse)

    p.shutdown(wait=True)

    print('',current_thread().name)
test

map函数:

# 我们的那个p.submit(task,i)和map函数的原理类似。我们就
# 可以用map函数去代替。更减缩了代码
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
import os, time, random


def task(n):
    print('[%s] is running' % os.getpid())
    time.sleep(random.randint(1, 3))  # I/O密集型的,,一般用线程,用了进程耗时长
    return n ** 2


if __name__ == '__main__':
    p = ProcessPoolExecutor()
    obj = p.map(task, range(10))
    p.shutdown()  # 相当于close和join方法
    print('=' * 30)
    print(obj)  # 返回的是一个迭代器
    print(list(obj))
View Code

回调函数(知乎):https://www.zhihu.com/question/19801131/answer/27459821

二、协程

在单线程的情况下实现并发。

遇到IO就切换就可以降低单线程的IO时间,从而最大限度地提升单线程的效率。

实现并发是让多个任务看起来同时运行(切换+保存状态),cpu在运行一个任务的时候,会在两种情况下去执行其他的任务,一种是遇到了I/O操作,一种是计算时间过长。其中第二种情况使用线程并发并不能提升效率,运算密集型的并发反而会降低效率。

#串行执行
import time

def func1():
    for i in range(10000000):
        i+1

def func2():
    for i in range(10000000):
        i+1

start = time.time()
func1()
func2()
stop = time.time()
print(stop - start)#1.675490379333496
串行执行
#基于yield并发执行
import time
def func1():
    while True:
        print('func1')
        100000+1
        yield

def func2():
    g=func1()
    for i in range(10000000):
        print('func2')
        time.sleep(100)
        i+1
        next(g)

start=time.time()
func2()
stop=time.time()
print(stop-start)
基于yield并发执行

yield复习:

函数中只有有yield,这个函数就变成了一个生成器,调用函数不会执行函数体代码,会得到一个返回值,返回值就是生成器对象。

def yield_test(n):
    for i in range(n):
        yield call(i)
        print("i=",i)
    #做一些其它的事情
    print("do something.")
    print("end.")

def call(i):
    return i*2

#使用for循环
for i in yield_test(5):
    print(i,",")
test

协程的本质就是在单线程下,由用户自己控制一个任务遇到IO操作就切换到另一个任务去执行,以此来提升效率。

Gevent:

gevent是第三方库,通过greenlet实现协程,其基本思想是:

当一个greenlet遇到IO操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行。由于IO操作非常耗时,经常使程序处于等待状态,有了gevent为我们自动切换协程,就保证总有greenlet在运行,而不是等待IO。

由于切换是在IO操作时自动完成,所以gevent需要修改Python自带的一些标准库,这一过程在启动时通过monkey patch完成:

我们用等待的时间模拟IO阻塞 在gevent模块里面要用gevent.sleep(5)表示等待的时间 要是我们想用time.sleep(),就要在最上面导入from gevent import monkey;monkey.patch_all()这句话 如果不导入直接用time.sleep(),就实现不了单线程并发的效果了

注:猴子补丁需要在第一行就运行

from gevent import monkey;monkey.patch_all()
from gevent import spawn,joinall #pip3 install gevent
import time

def play(name):
    print('%s play 1' %name)
    time.sleep(5)
    print('%s play 2' %name)

def eat(name):
    print('%s eat 1' %name)
    time.sleep(3)
    print('%s eat 2' %name)


start=time.time()
g1=spawn(play,'lxx')
g2=spawn(eat,'lxx')

# g1.join()
# g2.join()
joinall([g1,g2])
print('',time.time()-start)
test

gevent.spawn()”方法会创建一个新的greenlet协程对象,并运行它。”gevent.joinall()”方法会等待所有传入的greenlet协程运行结束后再退出,这个方法可以接受一个”timeout”参数来设置超时时间,单位是秒。

在单线程内实现socket并发:

from gevent import monkey;monkey.patch_all()
from socket import *
from gevent import spawn

def comunicate(conn):
    while True:  # 通信循环
        try:
            data = conn.recv(1024)
            if len(data) == 0: break
            conn.send(data.upper())
        except ConnectionResetError:
            break
    conn.close()


def server(ip, port, backlog=5):
    server = socket(AF_INET, SOCK_STREAM)
    server.bind((ip, port))
    server.listen(backlog)

    while True:  # 链接循环
        conn, client_addr = server.accept()
        print(client_addr)

        # 通信
        spawn(comunicate,conn)

if __name__ == '__main__':
    g1=spawn(server,'127.0.0.1',8080)
    g1.join()
server
from threading import Thread,current_thread
from socket import *

def client():
    client=socket(AF_INET,SOCK_STREAM)
    client.connect(('127.0.0.1',8080))

    n=0
    while True:
        msg='%s say hello %s' %(current_thread().name,n)
        n+=1
        client.send(msg.encode('utf-8'))
        data=client.recv(1024)
        print(data.decode('utf-8'))

if __name__ == '__main__':
    for i in range(500):
        t=Thread(target=client)
        t.start()
client

 

焚膏油以继晷,恒兀兀以穷年。
相关文章
|
6天前
|
消息中间件 调度
如何区分进程、线程和协程?看这篇就够了!
本课程主要探讨操作系统中的进程、线程和协程的区别。进程是资源分配的基本单位,具有独立性和隔离性;线程是CPU调度的基本单位,轻量且共享资源,适合并发执行;协程更轻量,由程序自身调度,适合I/O密集型任务。通过学习这些概念,可以更好地理解和应用它们,以实现最优的性能和资源利用。
40 11
|
2月前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
2月前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
2月前
|
Java Unix 调度
python多线程!
本文介绍了线程的基本概念、多线程技术、线程的创建与管理、线程间的通信与同步机制,以及线程池和队列模块的使用。文章详细讲解了如何使用 `_thread` 和 `threading` 模块创建和管理线程,介绍了线程锁 `Lock` 的作用和使用方法,解决了多线程环境下的数据共享问题。此外,还介绍了 `Timer` 定时器和 `ThreadPoolExecutor` 线程池的使用,最后通过一个具体的案例展示了如何使用多线程爬取电影票房数据。文章还对比了进程和线程的优缺点,并讨论了计算密集型和IO密集型任务的适用场景。
132 4
|
2月前
|
调度 iOS开发 MacOS
python多进程一文够了!!!
本文介绍了高效编程中的多任务原理及其在Python中的实现。主要内容包括多任务的概念、单核和多核CPU的多任务实现、并发与并行的区别、多任务的实现方式(多进程、多线程、协程等)。详细讲解了进程的概念、使用方法、全局变量在多个子进程中的共享问题、启动大量子进程的方法、进程间通信(队列、字典、列表共享)、生产者消费者模型的实现,以及一个实际案例——抓取斗图网站的图片。通过这些内容,读者可以深入理解多任务编程的原理和实践技巧。
150 1
|
2月前
|
监控 JavaScript 前端开发
python中的线程和进程(一文带你了解)
欢迎来到瑞雨溪的博客,这里是一位热爱JavaScript和Vue的大一学生分享技术心得的地方。如果你从我的文章中有所收获,欢迎关注我,我将持续更新更多优质内容,你的支持是我前进的动力!🎉🎉🎉
35 0
|
2月前
|
数据采集 Java Python
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
82 0
|
6月前
|
运维 关系型数据库 MySQL
掌握taskset:优化你的Linux进程,提升系统性能
在多核处理器成为现代计算标准的今天,运维人员和性能调优人员面临着如何有效利用这些处理能力的挑战。优化进程运行的位置不仅可以提高性能,还能更好地管理和分配系统资源。 其中,taskset命令是一个强大的工具,它允许管理员将进程绑定到特定的CPU核心,减少上下文切换的开销,从而提升整体效率。
掌握taskset:优化你的Linux进程,提升系统性能
|
6月前
|
弹性计算 Linux 区块链
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
208 4
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
|
5月前
|
算法 Linux 调度
探索进程调度:Linux内核中的完全公平调度器
【8月更文挑战第2天】在操作系统的心脏——内核中,进程调度算法扮演着至关重要的角色。本文将深入探讨Linux内核中的完全公平调度器(Completely Fair Scheduler, CFS),一个旨在提供公平时间分配给所有进程的调度器。我们将通过代码示例,理解CFS如何管理运行队列、选择下一个运行进程以及如何对实时负载进行响应。文章将揭示CFS的设计哲学,并展示其如何在现代多任务计算环境中实现高效的资源分配。

热门文章

最新文章