从零到一:构建Python异步编程思维,掌握协程与异步函数

简介: 【7月更文挑战第15天】Python异步编程提升效率,通过协程与异步函数实现并发。从async def定义异步函数,如`say_hello()`,使用`await`等待异步操作。`asyncio.run()`驱动事件循环。并发执行任务,如`asyncio.gather()`同时处理`fetch_data()`任务,降低总体耗时。入门异步编程,解锁高效代码。

在Python编程的世界里,随着网络应用的日益复杂,异步编程成为了一个不可忽视的重要技能。对于初学者而言,掌握异步编程不仅能够提升代码的执行效率,还能更好地理解现代编程的并发与并行概念。本文将从零开始,带你逐步构建Python异步编程的思维,掌握协程与异步函数这一强大工具。

一、理解异步编程的基本概念
首先,我们需要明确什么是异步编程。简单来说,异步编程允许程序在等待某个长时间运行的操作(如网络请求、文件读写)完成时,继续执行其他任务,而不是阻塞在那里等待。这样做可以显著提高程序的响应性和吞吐量。

在Python中,异步编程的核心是协程(Coroutine)和异步函数(Async Functions)。协程是一种用户态的轻量级线程,可以在执行过程中挂起和恢复,而不需要像传统线程那样进行上下文切换。异步函数则是协程的一种高级封装,使用async def定义,内部可以包含await表达式来等待异步操作完成。

二、编写第一个异步函数
让我们从一个简单的异步函数开始:

python
import asyncio

async def say_hello():
print("Hello, asyncio!")

# 模拟异步操作,比如网络请求  
await asyncio.sleep(1)  
print("Finished saying hello")  

注意:异步函数需要使用asyncio的事件循环来运行

async def main():
await say_hello()

运行事件循环

asyncio.run(main())
在这个例子中,say_hello是一个异步函数,它首先打印一条消息,然后模拟一个耗时1秒的异步操作(通过await asyncio.sleep(1)实现)。main函数也是异步的,它调用了say_hello函数。最后,我们使用asyncio.run(main())来运行整个异步程序。

三、并发执行多个异步任务
异步编程的魅力在于能够并发执行多个任务。我们可以通过asyncio.create_task来创建异步任务,并使用asyncio.gather等待它们全部完成:

python
async def fetch_data(url):
print(f'Fetching {url}...')
await asyncio.sleep(1) # 模拟网络请求
return f'Data from {url}'

async def main():
task1 = asyncio.create_task(fetch_data('http://example.com/1'))
task2 = asyncio.create_task(fetch_data('http://example.com/2'))

# 等待所有任务完成,并获取结果  
results = await asyncio.gather(task1, task2)  
print(results)  

asyncio.run(main())
在这个例子中,fetch_data函数模拟了从两个不同URL获取数据的异步操作。main函数中创建了两个异步任务,并使用asyncio.gather等待它们完成。由于这两个任务是并发执行的,所以总耗时接近于单个任务的最长耗时,而不是它们的总和。

四、总结与展望
通过上述示例,我们初步了解了异步编程的基本概念,并掌握了协程与异步函数的使用方法。然而,异步编程的世界远不止于此。在实际开发中,你可能会遇到更复杂的异步编程场景,比如处理异常、使用异步上下文管理器、以及与其他异步库集成等。但只要你掌握了上述基础,相信你会逐渐适应并享受异步编程带来的便利和高效。

最后,希望本文能够为你打开异步编程的大门,让你在Python编程的道路上越走越远。

相关文章
|
5月前
|
人工智能 JavaScript API
零基础构建MCP服务器:TypeScript/Python双语言实战指南
作为一名深耕技术领域多年的博主摘星,我深刻感受到了MCP(Model Context Protocol)协议在AI生态系统中的革命性意义。MCP作为Anthropic推出的开放标准,正在重新定义AI应用与外部系统的交互方式,它不仅解决了传统API集成的复杂性问题,更为开发者提供了一个统一、安全、高效的连接框架。在过去几个月的实践中,我发现许多开发者对MCP的概念理解透彻,但在实际动手构建MCP服务器时却遇到了各种技术壁垒。从环境配置的细节问题到SDK API的深度理解,从第一个Hello World程序的调试到生产环境的部署优化,每一个环节都可能成为初学者的绊脚石。因此,我决定撰写这篇全面的实
1120 67
零基础构建MCP服务器:TypeScript/Python双语言实战指南
|
5月前
|
机器学习/深度学习 算法 量子技术
GQNN框架:让Python开发者轻松构建量子神经网络
为降低量子神经网络的研发门槛并提升其实用性,本文介绍一个名为GQNN(Generalized Quantum Neural Network)的Python开发框架。
129 4
GQNN框架:让Python开发者轻松构建量子神经网络
|
5月前
|
数据采集 存储 JSON
Python爬取知乎评论:多线程与异步爬虫的性能优化
Python爬取知乎评论:多线程与异步爬虫的性能优化
|
5月前
|
数据采集 存储 C++
Python异步爬虫(aiohttp)加速微信公众号图片下载
Python异步爬虫(aiohttp)加速微信公众号图片下载
|
4月前
|
人工智能 自然语言处理 安全
Python构建MCP服务器:从工具封装到AI集成的全流程实践
MCP协议为AI提供标准化工具调用接口,助力模型高效操作现实世界。
883 1
|
4月前
|
传感器 数据采集 监控
Python生成器与迭代器:从内存优化到协程调度的深度实践
简介:本文深入解析Python迭代器与生成器的原理及应用,涵盖内存优化技巧、底层协议实现、生成器通信机制及异步编程场景。通过实例讲解如何高效处理大文件、构建数据流水线,并对比不同迭代方式的性能特点,助你编写低内存、高效率的Python代码。
234 0
|
5月前
|
数据采集 监控 调度
干货分享“用 多线程 爬取数据”:单线程 + 协程的效率反超 3 倍,这才是 Python 异步的正确打开方式
在 Python 爬虫中,多线程因 GIL 和切换开销效率低下,而协程通过用户态调度实现高并发,大幅提升爬取效率。本文详解协程原理、实战对比多线程性能,并提供最佳实践,助你掌握异步爬虫核心技术。
|
算法 Python 容器
Python编程 - 不调用相关choose库函数,“众数“挑选器、随机挑选器 的源码编程实现
Python编程 - 不调用相关choose库函数,“众数“挑选器、随机挑选器 的源码编程实现
248 0
|
算法 Python
Python编程的函数—内置函数
Python编程的函数—内置函数
192 0
|
算法 Python
Python编程实验四:函数的使用
Python编程实验四:函数的使用
261 0

推荐镜像

更多