吴恩达:模拟人脑,未来AI执行精神层面任务有望快过人类!

简介: AI在未来如何实现真正的“智能”?这个问题似乎遭遇瓶颈。目前深度学习对人类大脑的模拟仍然处于初级阶段,是否应该沿这条路继续走下去?吴恩达认为,通过深度学习模拟大脑,未来的AI能够比人类更快地完成精神层面的任务。也有研究人员认为,应从大自然中寻找灵感,让AI建立关于世界的“心理模型”。

【新智元导读】AI在未来如何实现真正的“智能”?这个问题似乎遭遇瓶颈。目前深度学习对人类大脑的模拟仍然处于初级阶段,是否应该沿这条路继续走下去?吴恩达认为,通过深度学习模拟大脑,未来的AI能够比人类更快地完成精神层面的任务。也有研究人员认为,应从大自然中寻找灵感,让AI建立关于世界的“心理模型”。

现在,我们已经将AI技术应用在自动驾驶和医疗上,甚至10多亿中国公民的社会信用评分都可以依靠AI技术,现在我们已经在讨论如何让AI学会自己不会做的事情。AI技术曾经仅仅是一个学术问题,而现在已经成为高达数十亿美元的人才和基础设施的产业,而且关系到人类的未来。

关于这个问题的讨论焦点是,目前构建AI的是否足够。我们能够通过对现有技术的调整,利用足够强大的计算力,来实现被认为仅存在于人和动物身上的真正的“智能”?

关于这个问题,辩论的一方是“深度学习”的支持者 - 自2012年多伦多大学三位研究人员的一篇具有里程碑意义的论文以来,深度学习已经大受欢迎。虽然它远非人工智能的唯一方法,但已经证明了我们能够实现以前的技术无法实现的成就。

“深度学习”中的“深度”是指其网络中人工神经元的层数。生物学上的“神经元”一样,具有更多层神经元的人工神经系统能够进行更复杂的学习。

吴恩达:模拟人脑,未来AI完成精神层面任务只需几秒

要理解人工神经网络,可以想象一下空间中的一堆点,就像我们大脑中的神经元一样。调整这些点之间连接的强度,就是在大致模拟大脑学习时发生的事情。模拟结果产生一幅神经连接图,图中包括达到期望结果(比如正确识别出图像)的最佳途径。

今天的深度学习系统还达不到我们的大脑的复杂度。它们充其量看起来就像视网膜的外表面,只有少数几层神经元对图像进行初始处理。

这种网络不太可能胜任我们大脑能完成的所有任务。因为它们并不能像真正的“智能”生物那样了解世界,所以网络显得很脆弱,容易造成混淆。比如,研究人员能够只改变图像中的单个像素,就可以成功欺骗流行的图像识别算法。

尽管存在局限性,深度学习还是为研发图像和语音识别、机器翻译和棋类游戏中击败人类的黄金标准软件提供了强大动力。深度学习是谷歌研发定制化AI芯片和这些利用这些芯片运行的AI云服务的动力,Nvidia的自动驾驶汽车技术也是如此。

image

吴恩达

人工智能领域中最具影响力的人之一、曾在谷歌大脑工作并担任百度前人工智能首席科学家的吴恩达表示,通过深度学习,计算机应该能够完成普通人在一秒或几秒内就能完成的任何精神层面的任务。而且计算机的完成速度甚至可以比人类更快。

推进AI需要从大自然中寻找灵感

而这场讨论中同样有研究人员持相反观点,比如Uber公司人工智能部门的前负责人、现纽约大学教授Gary Marcus认为深度学习远不足以完成我们能够完成的各种事情。他认为,深度学习永远无法取代全部的白领工作,无法引领我们走向全自动化的、“奢侈化共产主义”的辉煌未来。

Marcus博士表示,要获得“通用智能”需要具备推理能力,能够自己学习,建立关于世界的心理模型,这些都超出了现在AI的能力。

“目前我们利用深度学习取得了很多里程碑式的成就,但这并不意味着深度学习是建立思维理论或抽象推理的正确工具。”马库斯博士说。

为了进一步推进人工智能,“我们需要从大自然中获取灵感。”Marcus博士说。也就是说要建立其他类型的人工神经网络,并在某些情况下为其提供与生俱来的预编程的知识,就像所有生物都具备的天生本能一样。

image

纽约大学教授Gary Marcus

研究人员还在努力让AI建立关于世界的心理模型,一般婴儿在一岁时就能建立这种模型了。因此,就算一个AI系统已经见过一百万张校车的图片,但当它第一次见到一辆翻车的校车时,可能还是认不出来。如果AI能够构建一个心理模型,其中包括校车的车轮、黄色底盘等,认出翻车的校车可能就没那么难了。

人工智能促进协会(AAAI)前主席Thomas Dietterich表示,努力寻找其他类型人工智能的深度学习是很好的做法,但重要的是,不能在总体上忽视深度学习和机器学习的神奇之处。

“对于机器学习研究来说,我们的目标是看看能在多大程度上让计算机系统从数据和经验中学习,而不是手工构建这些系统。”Dietterich博士说,问题不在于人工智能中的先天知识不好,人类一开始就根本不知道自己掌握了哪些先天知识。

Duvenaud博士说:“原则上,我们在研究如何构建未来的AI时不需要参考生物学。” 但他也表示,那些能够成功实现以深度学习为重点的、更复杂的系统目前还没有取得成功。

Marcus博士说,在弄清楚如何让AI变得更智能、更强大之前,我们仍必须向AI系统中输入大量现有的人类知识。也就是说,像自动驾驶软件这样的AI系统中的许多“智能”根本就不是“人工”的。虽然很多企业需要在尽量多的真实道路上训练自动驾驶车,但现在,使这些AI系统真正获得自驾能力,仍然需要人工输入大量的逻辑,这些逻辑反映了构建和测试自动驾驶车辆的工程师们做出的决策。

原文发布时间为:2018-08-05
本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”。
原文链接:吴恩达:模拟人脑,未来AI执行精神层面任务有望快过人类!

相关文章
|
16天前
|
人工智能 自然语言处理 数据可视化
AutoAgents:比LangChain更激进的AI开发神器!自然语言生成AI智能体军团,1句话搞定复杂任务
AutoAgents 是基于大型语言模型的自动智能体生成框架,能够根据用户设定的目标自动生成多个专家角色的智能体,通过协作完成复杂任务。支持动态生成智能体、任务规划与执行、多智能体协作等功能。
189 91
|
4天前
|
存储 人工智能 监控
Mahilo:多智能体实时协作框架开源!人类与AI无缝交互,复杂任务一键协同
Mahilo 是一个灵活的多智能体框架,支持创建与人类互动的多智能体系统,适用于从客户服务到紧急响应等多种场景。
48 1
Mahilo:多智能体实时协作框架开源!人类与AI无缝交互,复杂任务一键协同
|
1月前
|
机器学习/深度学习 人工智能 计算机视觉
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
MILS 是 Meta AI 推出的零样本生成高质量多模态描述方法,支持图像、视频和音频的描述生成,无需额外训练。
127 34
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
|
8天前
|
人工智能 算法 测试技术
OctoTools:斯坦福开源AI推理神器!16项测试准确率碾压GPT-4o,一键搞定复杂任务
OctoTools 是斯坦福大学推出的开源智能体框架,通过标准化工具卡片和自动化工具集优化算法,显著提升复杂推理任务的解决效率,支持多领域应用。
47 3
OctoTools:斯坦福开源AI推理神器!16项测试准确率碾压GPT-4o,一键搞定复杂任务
|
15天前
|
人工智能 Kubernetes 测试技术
SWE-Lancer:OpenAI发布衡量AI工程能力的「血汗标尺」!1400个百万美元任务实测,GPT-4o仅能赚2.9万刀?
SWE-Lancer 是 OpenAI 推出的基准测试,评估语言模型在自由职业软件工程任务中的表现,涵盖真实任务、端到端测试和多选项评估。
70 4
SWE-Lancer:OpenAI发布衡量AI工程能力的「血汗标尺」!1400个百万美元任务实测,GPT-4o仅能赚2.9万刀?
|
2月前
|
人工智能 前端开发 程序员
通义灵码 AI 程序员全面上线,能和人类协作完成复杂开发任务
1 月 8 日消息,阿里云通义灵码 AI 程序员已全面上线,成为全球首个同时支持 VS Code、JetBrains IDEs 开发工具的 AI 程序员产品。此次上线的 AI 程序员相比传统 AI 辅助编程工具,能力更全面,可以让开发者以更高效、更沉浸的方式完成编码任务,通过全程对话协作的方式,就能完成从 0 到 1 的业务需求开发、问题修复、单元测试批量生成等复杂编码任务。
380 65
|
8天前
|
人工智能 自然语言处理 并行计算
MeteoRA:多任务AI框架革新!动态切换+MoE架构,推理效率提升200%
MeteoRA 是南京大学推出的多任务嵌入框架,基于 LoRA 和 MoE 架构,支持动态任务切换与高效推理。
43 3
|
2月前
|
数据采集 人工智能 算法
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%
Seer是由上海AI实验室与北大等机构联合推出的端到端操作模型,结合视觉预测与动作执行,显著提升机器人任务成功率。
87 20
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%
|
2月前
|
数据采集 人工智能 自然语言处理
Riona-AI-Agent:自媒体 AI 代理!自动点赞、评论、个性化内容生成和发布等交互任务
Riona-AI-Agent 是一款基于 Node.js 和 TypeScript 的 AI 自动化工具,支持 Instagram、Twitter 等平台的自动化交互,生成高质量内容,提升社交媒体管理效率。
193 13
Riona-AI-Agent:自媒体 AI 代理!自动点赞、评论、个性化内容生成和发布等交互任务
|
2月前
|
人工智能 开发框架 自然语言处理
Eko:一句话就能快速构建复杂工作流的 AI 代理开发框架!快速实现自动操作电脑和浏览器完成任务
Eko 是 Fellou AI 推出的开源 AI 代理开发框架,支持自然语言驱动,帮助开发者快速构建从简单指令到复杂工作流的智能代理。
421 12
Eko:一句话就能快速构建复杂工作流的 AI 代理开发框架!快速实现自动操作电脑和浏览器完成任务

热门文章

最新文章