深度学习之 TensorFlow(一):基础库包的安装

简介:  1.TensorFlow 简介:TensorFlow 是谷歌公司开发的深度学习框架,也是目前深度学习的主流框架之一。  2.TensorFlow 环境的准备: 本人使用 macOS,Python 版本直接使用 anaconda 的集成包,我们使用 anaconda 来管理环境,为 TensorFlow 创建独立的 Python 环境。

 1.TensorFlow 简介:TensorFlow 是谷歌公司开发的深度学习框架,也是目前深度学习的主流框架之一。
 

 2.TensorFlow 环境的准备:

 本人使用 macOS,Python 版本直接使用 anaconda 的集成包,我们使用 anaconda 来管理环境,为 TensorFlow 创建独立的 Python 环境。

  创建一个名为 tensorflow 的 Python 环境:

conda create --name tensorflow python=3.6

  激活环境:

source activate tensorflow

  退出环境:

source deactivate tensorflow

 

 然后我们在 tensorflow 环境下基于 pip 来安装 TensorFlow:

  安装 TensorFlow:

pip install tensorflow

 

  安装完 TensorFlow 后我们试着进入 Python 环境来运行 TensorFlow 测试是否安装成功:

  输入一个例子:

  至此,我们 TensorFlow 便安装成功了。

 

 3.安装其他依赖的模块:

(1)numpy

  numpy 是用来存储和处理大型矩阵的科学计算包,比 Python 自身的嵌套列表结构 list 要高效的多。

  安装:

pip install numpy --upgrade

 (2) matplotlib

  matplotlib 是 Python 最著名的绘图表,它提供了一整套和 MATLAB 相似的命令 API,十分适合交互式地进行制图。

  安装:

pip install matplotlib --upgrade

 (3) jupyter

  jupyter notebook 是 ipython 的升级版,能够在浏览器中创建和共享代码、方程、说明文档。

  安装:

pip install jupyter --upgrade

 (4) scikit-image

  scikit-image 有一组图像处理的算法,可以使过滤一张图片变得很简单,非常适合用于对图像的预处理。

  安装:

pip install scikit-image --upgrade

 (5) librosa

  librosa 是用 Python 进行音频提取的第三方库,有很多方式可以提取音频特征。

  安装:

pip install librosa --upgrade

 (6) nltk

  nltk 模块中包含着大量的语料库,可以很方便地完成很多自然语言处理的任务,包括分词、词性标注、命名实体识别及句法分析。

  安装:

pip install nltk --upgrade

  安装完成后,需要导入 nltk 工具包,下载 nltk 数据源:

import nltk
nltk.download()

 (7) keras

  Keras 是第一个被添加到 TensorFlow 核心中的高级别框架,成为 TensorFlow 的默认 API。

  安装:

pip install keras --upgrade

 (8) tflearn

  TFLearn 是另一个支持 TensorFlow 的第三方框架。

  安装:

pip install git+https://github.com/tflearn/tflearn.git

 

相关文章
|
21天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
221 55
|
3月前
|
机器学习/深度学习 算法 测试技术
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
本文是关于如何搭建深度学习环境,特别是使用mmdetection进行CPU安装和训练的详细指南。包括安装Anaconda、创建虚拟环境、安装PyTorch、mmcv-full和mmdetection,以及测试环境和训练目标检测模型的步骤。还提供了数据集准备、检查和网络训练的详细说明。
156 5
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
|
3月前
|
并行计算 PyTorch TensorFlow
Ubuntu安装笔记(一):安装显卡驱动、cuda/cudnn、Anaconda、Pytorch、Tensorflow、Opencv、Visdom、FFMPEG、卸载一些不必要的预装软件
这篇文章是关于如何在Ubuntu操作系统上安装显卡驱动、CUDA、CUDNN、Anaconda、PyTorch、TensorFlow、OpenCV、FFMPEG以及卸载不必要的预装软件的详细指南。
5389 3
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
160 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
118 5
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
94 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
108 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
105 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 并行计算 PyTorch
深度学习环境搭建笔记(一):detectron2安装过程
这篇博客文章详细介绍了在Windows环境下,使用CUDA 10.2配置深度学习环境,并安装detectron2库的步骤,包括安装Python、pycocotools、Torch和Torchvision、fvcore,以及对Detectron2和PyTorch代码的修改。
537 1
深度学习环境搭建笔记(一):detectron2安装过程
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
106 0