python数据抓取分析(python + mongodb)

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介: 分享点干货!!! Python数据抓取分析 编程模块:requests,lxml,pymongo,time,BeautifulSoup 首先获取所有产品的分类网址: 1 def step(): 2 try: 3 headers = { 4 。

分享点干货!!!

Python数据抓取分析

编程模块:requests,lxml,pymongo,time,BeautifulSoup

首先获取所有产品的分类网址:

 1 def step():
 2     try:
 3         headers = {
 4            。。。。。
 5             }
 6         r = requests.get(url,headers,timeout=30)
 7         html = r.content
 8         soup = BeautifulSoup(html,"lxml")
 9         url = soup.find_all(正则表达式)
10         for i in url:
11             url2 =  i.find_all('a')
12             for j in url2:
13                  step1url =url + j['href']
14                  print step1url
15                  step2(step1url)
16     except Exception,e:
17         print e

 

我们在产品分类的同时需要确定我们所访问的地址是产品还是又一个分类的产品地址(所以需要判断我们访问的地址是否含有if判断标志):

 1 def step2(step1url):
 2     try:
 3         headers = {
 4            。。。。
 5             }
 6         r = requests.get(step1url,headers,timeout=30)
 7         html = r.content
 8         soup = BeautifulSoup(html,"lxml")
 9         a = soup.find('div',id='divTbl')
10         if a:
11             url = soup.find_all('td',class_='S-ITabs')
12             for i in url:
13                 classifyurl =  i.find_all('a')
14                 for j in classifyurl:
15                      step2url = url + j['href']
16                      #print step2url
17                      step3(step2url)
18         else:
19             postdata(step1url)

当我们if判断后为真则将第二页的分类网址获取到(第一个步骤),否则执行postdata函数,将网页产品地址抓取!

 1 def producturl(url):
 2     try:
 3         p1url = doc.xpath(正则表达式)
 4         for i in xrange(1,len(p1url) + 1):
 5             p2url = doc.xpath(正则表达式)
 6             if len(p2url) > 0:
 7                 producturl = url + p2url[0].get('href')
 8                 count = db[table].find({'url':producturl}).count()
 9                 if count <= 0:
10                         sn = getNewsn()
11                         db[table].insert({"sn":sn,"url":producturl})
12                         print str(sn) + 'inserted successfully'
13                 else:
14                         'url exist'
15 
16     except Exception,e:
17         print e

其中为我们所获取到的产品地址并存入mongodb中,sn作为地址的新id。

下面我们需要在mongodb中通过新id索引来获取我们的网址并进行访问,对产品进行数据分析并抓取,将数据更新进数据库内!

其中用到最多的BeautifulSoup这个模块,但是对于存在于js的价值数据使用BeautifulSoup就用起来很吃力,所以对于js中的数据我推荐使用xpath,但是解析网页就需要用到HTML.document_fromstring(url)方法来解析网页。

对于xpath抓取价值数据的同时一定要细心!如果想了解xpath就在下面留言,我会尽快回答!

 1 def parser(sn,url):
 2     try:
 3         headers = {
 4             。。。。。。
 5             }
 6         r = requests.get(url, headers=headers,timeout=30)
 7         html = r.content
 8         soup = BeautifulSoup(html,"lxml")
 9         dt = {}
10         #partno
11         a = soup.find("meta",itemprop="mpn")
12         if a:
13             dt['partno'] = a['content']
14         #manufacturer
15         b = soup.find("meta",itemprop="manufacturer")
16         if b:
17             dt['manufacturer'] = b['content']
18         #description
19         c = soup.find("span",itemprop="description")
20         if c:
21             dt['description'] = c.get_text().strip()
22         #price
23         price = soup.find("table",class_="table table-condensed occalc_pa_table")
24         if price:
25             cost = {}
26             for i in price.find_all('tr'):
27                 if len(i) > 1:
28                     td = i.find_all('td')
29                     key=td[0].get_text().strip().replace(',','')
30                     val=td[1].get_text().replace(u'\u20ac','').strip()
31                     if key and val:
32                         cost[key] = val
33             if cost:
34                 dt['cost'] = cost
35                 dt['currency'] = 'EUR'
36         
37         #quantity
38         d = soup.find("input",id="ItemQuantity")
39         if d:
40            dt['quantity'] = d['value']
41         #specs
42         e = soup.find("div",class_="row parameter-container")
43         if e:
44             key1 = []
45             val1= []
46             for k in e.find_all('dt'):
47                 key =  k.get_text().strip().strip('.')
48                 if key:
49                     key1.append(key)
50             for i in e.find_all('dd'):
51                 val =  i.get_text().strip()
52                 if val:
53                     val1.append(val)
54             specs = dict(zip(key1,val1))
55         if specs:
56             dt['specs'] = specs
57             print dt
58 
59             
60         if dt:
61             db[table].update({'sn':sn},{'$set':dt})
62             print str(sn) +  ' insert successfully'
63             time.sleep(3)
64         else:
65             error(str(sn) + '\t' + url)
66     except Exception,e:
67         error(str(sn) + '\t' + url)
68         print "Don't data!"

最后全部程序运行,将价值数据分析处理并存入数据库中!

 

Welcome to Python world! I have a contract in this world! How about you?
相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。 &nbsp; 相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
1月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
132 70
|
6天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
24 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
8天前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
60 37
Python时间序列分析工具Aeon使用指南
|
4天前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
38 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
5天前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
3天前
|
数据采集 缓存 API
python爬取Boss直聘,分析北京招聘市场
本文介绍了如何使用Python爬虫技术从Boss直聘平台上获取深圳地区的招聘数据,并进行数据分析,以帮助求职者更好地了解市场动态和职位需求。
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
129 36
|
25天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
1月前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
80 15
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
127 18