PostgreSQL Oracle PL/SQL 兼容性之 - AGGREGATE USING Clause 聚合函数

简介:

标签

PostgreSQL , Oracle , PL/SQL , 聚合函数 , 自定义聚合函数


背景

Oracle的自定义聚合函数的定义方法,在创建函数是,使用AGGREGATE USING Clause关键词。

AGGREGATE USING Clause

Specify AGGREGATE USING to identify this function as an aggregate function, or one that evaluates a group of rows and returns a single row. You can specify aggregate functions in the select list, HAVING clause, and ORDER BY clause.

When you specify a user-defined aggregate function in a query, you can treat it as an analytic function (one that operates on a query result set). To do so, use the OVER analytic_clause syntax available for built-in analytic functions. See "Analytic Functions" for syntax and semantics.

In the USING clause, specify the name of the implementation type of the function. The implementation type must be an object type containing the implementation of the ODCIAggregate routines. If you do not specify schema, Oracle Database assumes that the implementation type is in your own schema.

Restriction on Creating Aggregate Functions
If you specify this clause, you can specify only one input argument for the function.

自定义的聚合函数,与普通聚合函数一样,可以用于聚合、KEEP等操作SQL中。

PostgreSQL 聚合函数用法

https://www.postgresql.org/docs/10/static/functions-aggregate.html

《PostgreSQL aggregate function 1 : General-Purpose Aggregate Functions》

《PostgreSQL aggregate function 2 : Aggregate Functions for Statistics》

《PostgreSQL aggregate function 3 : Aggregate Functions for Ordered-Set》

《PostgreSQL aggregate function 4 : Hypothetical-Set Aggregate Functions》

PostgreSQL 自定义聚合函数

1、自定义普通聚合函数:

《PostgreSQL aggregate function customize》

2、自定义并行聚合函数:

《PostgreSQL Oracle 兼容性之 - 自定义并行聚合函数 PARALLEL_ENABLE AGGREGATE》

《PostgreSQL 10 自定义并行计算聚合函数的原理与实践 - (含array_agg合并多个数组为单个一元数组的例子)》

3、在postgres-xc中自定义多阶段分布式并行聚合函数:

《Postgres-XC customized aggregate introduction》

4、在greenplum中自定义多阶段分布式并行聚合函数:

《Greenplum 最佳实践 - 估值插件hll的使用(以及hll分式聚合函数优化)》

语法:

https://www.postgresql.org/docs/10/static/xaggr.html

https://www.postgresql.org/docs/10/static/sql-createaggregate.html

例子

1、普通聚合函数

目标:将结果聚合,并按某个字段输出为有序数组。

测试表

create table recommendation_mpt (user_id int8, app_id numeric, rating numeric);    
insert into recommendation_mpt select generate_series(1,10000), generate_series(1,41), random();    

聚合过程中最后一步,数据排序处理函数

create or replace function final_array_agg (i_text text) returns text[] as $$    
declare    
  result text[];    
begin    
  select array_agg(app_id||'_'||rating) into result from     
    (select split_part(i,'_',1) as app_id,   
            split_part(i,'_',2) as rating   -- 按它排序  
      from     
      regexp_split_to_table(i_text,',') t(i)    
      order by 2 desc) t;    
  return result;    
end;    
$$ language plpgsql strict;    
create aggregate agg_append (text) (    
sfunc = textcat,    
stype = text,    
FINALFUNC = final_array_agg);    
select agg_append(app_id||'_'||rating||',') from recommendation_mpt;    
postgres=# select agg_append(app_id||'_'||rating||',') from recommendation_mpt;    
-[ RECORD 1 ]-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
agg_append | {24_0.91642474103719,3_0.86293408786878,21_0.824714167509228,41_0.823069900739938,28_0.82022201269865,17_0.800656013656408,33_0.764910507481545,25_0.760074479039758,30_0.757540909573436,13_0.707890411838889,20_0.704598274547607,5_0.675859381910414,40_0.674109968356788,37_0.671832457184792,31_0.666503502987325,35_0.641303175128996,23_0.640862574335188,12_0.639161774888635,10_0.634707988705486,1_0.630520141683519,39_0.589550276752561,7_0.547058736439794,4_0.541917834896594,15_0.535650313366205,34_0.529437590856105,29_0.468865198083222,14_0.456227377057076,36_0.440769889391959,27_0.431988585740328,26_0.408387354109436,22_0.359426050912589,18_0.329283143393695,19_0.266014957334846,38_0.188361912034452,16_0.150509809609503,8_0.148780386894941,6_0.142394866328686,11_0.116577256470919,32_0.0993853402324021,2_0.00736959790810943,9_0.00227751117199659,_}  

当然,这个实际上现在PG已经内置了语法来支持,上面只是演示一下自定义聚合函数。

内置ORDER BY,通过string_agg进行聚合:

postgres=# select string_agg(app_id||'_'||rating, ',' order by rating desc) from recommendation_mpt ;  
-[ RECORD 1 ]-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
string_agg | 24_0.91642474103719,3_0.86293408786878,21_0.824714167509228,41_0.823069900739938,28_0.82022201269865,17_0.800656013656408,33_0.764910507481545,25_0.760074479039758,30_0.757540909573436,13_0.707890411838889,20_0.704598274547607,5_0.675859381910414,40_0.674109968356788,37_0.671832457184792,31_0.666503502987325,35_0.641303175128996,23_0.640862574335188,12_0.639161774888635,10_0.634707988705486,1_0.630520141683519,39_0.589550276752561,7_0.547058736439794,4_0.541917834896594,15_0.535650313366205,34_0.529437590856105,29_0.468865198083222,14_0.456227377057076,36_0.440769889391959,27_0.431988585740328,26_0.408387354109436,22_0.359426050912589,18_0.329283143393695,19_0.266014957334846,38_0.188361912034452,16_0.150509809609503,8_0.148780386894941,6_0.142394866328686,11_0.116577256470919,32_0.0993853402324021,2_0.00736959790810943,9_0.00227751117199659  

参考

https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_5009.htm

https://www.postgresql.org/docs/10/static/xaggr.html

《PostgreSQL aggregate function customize》

《PostgreSQL Oracle 兼容性之 - 自定义并行聚合函数 PARALLEL_ENABLE AGGREGATE》

《PostgreSQL 10 自定义并行计算聚合函数的原理与实践 - (含array_agg合并多个数组为单个一元数组的例子)》

《Postgres-XC customized aggregate introduction》

《Greenplum 最佳实践 - 估值插件hll的使用(以及hll分式聚合函数优化)》

《PostgreSQL Oracle 兼容性之 - PL/SQL pipelined》

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
7月前
|
Oracle 关系型数据库 数据库
【赵渝强老师】在PostgreSQL中访问Oracle
本文介绍了如何在PostgreSQL中使用oracle_fdw扩展访问Oracle数据库数据。首先需从Oracle官网下载三个Instance Client安装包并解压,设置Oracle环境变量。接着从GitHub下载oracle_fdw扩展,配置pg_config环境变量后编译安装。之后启动PostgreSQL服务器,在数据库中创建oracle_fdw扩展及外部数据库服务,建立用户映射。最后通过创建外部表实现对Oracle数据的访问。文末附有具体操作步骤与示例代码。
276 6
【赵渝强老师】在PostgreSQL中访问Oracle
|
SQL 数据采集 监控
局域网监控电脑屏幕软件:PL/SQL 实现的数据库关联监控
在当今网络环境中,基于PL/SQL的局域网监控系统对于企业和机构的信息安全至关重要。该系统包括屏幕数据采集、数据处理与分析、数据库关联与存储三个核心模块,能够提供全面而准确的监控信息,帮助管理者有效监督局域网内的电脑使用情况。
184 2
|
Oracle NoSQL 关系型数据库
主流数据库对比:MySQL、PostgreSQL、Oracle和Redis的优缺点分析
主流数据库对比:MySQL、PostgreSQL、Oracle和Redis的优缺点分析
2616 3
|
SQL Oracle 关系型数据库
SQL与PL/SQL:数据库编程语言的比较
【8月更文挑战第31天】
483 1
|
SQL Oracle 关系型数据库
|
SQL 关系型数据库 MySQL
OceanBase 的 SQL 兼容性与优化
【8月更文第31天】随着分布式计算的发展,越来越多的企业开始采用分布式数据库来满足其大规模数据存储和处理的需求。OceanBase 作为一款高性能的分布式关系数据库,其设计旨在为用户提供与传统单机数据库类似的 SQL 查询体验,同时保持高可用性和水平扩展能力。本文将深入探讨 OceanBase 的 SQL 引擎特性、兼容性问题,并提供一些针对特定查询进行优化的方法和代码示例。
1008 0
|
人工智能 Oracle 关系型数据库
一篇文章弄懂Oracle和PostgreSQL的Database Link
一篇文章弄懂Oracle和PostgreSQL的Database Link
|
SQL 数据库 Perl
PL/SQL中执行按钮变为灰色后如何恢复【已解决】
PL/SQL中执行按钮变为灰色后如何恢复【已解决】
1103 0
|
SQL Cloud Native 关系型数据库
ADBPG(AnalyticDB for PostgreSQL)是阿里云提供的一种云原生的大数据分析型数据库
ADBPG(AnalyticDB for PostgreSQL)是阿里云提供的一种云原生的大数据分析型数据库
1925 1
|
数据可视化 关系型数据库 MySQL
将 PostgreSQL 迁移到 MySQL 数据库
将 PostgreSQL 迁移到 MySQL 数据库
2481 2

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版
  • 推荐镜像

    更多