微服务架构的链路追踪和故障快速排查zipkin(微服务治理)

简介:

Zipkin分布式任务追踪


zipkin简介

Zipkin 是一款开源的分布式实时数据追踪系统,由基于 Google Dapper 的论文设计而来,由 Twitter 公司提供开源实现,主要功能是聚集来自各个异构系统的实时监控数据,和微服务架构下的接口直接的调用链路和系统延时问题。

Zipkin 提供了自己的UI,应用将自己的监控数据报告给zipkin,由Zipkin 汇集并提供关联图展示,Zipkin可以追踪请求调用链路。Zipkin 以 Trace 的结构表示一次请求的追踪,又把每个Trace拆分为若干个有依赖关系的 Span,在微服务架构中,一次用户的请求可能会被后台的若干个服务处理,这完整的一次用户请求可以一条调用链路Trace,每个调用处理请求的服务可以理解为一个Span(如API服务),这个服务也可能继续调用其他的服务,因此形成一个Span的树形结构,以体现服务间的调用关系。

Zipkin 的用户界面除了可以查看 Span 的依赖关系之外,还以瀑布图的形式显示了每个 Span 的耗时情况,可以一目了然的看到各个服务的性能状况。打开每个 Span,还有更详细的数据以键值对的形式呈现,而且这些数据可以在装备应用的时候自行添加。

Spring Cloud Sleuth是对Zipkin的一个封装,对于Span、Trace等信息的生成、接入HTTP Request,以及向Zipkin Server发送采集信息等全部自动完成。

Spring Cloud Sleuth的简介

以下是Spring Cloud Sleuth的概念图

在Spring Cloud Sleuth的封装中,Zipkin分为两端,一个是Zipkin服务端,一个是Zipkin客户端,客户端也就是微服务的应用, 
客户端会配置服务端的url地址,一旦发生服务间的调用的时候,会被配置在微服务里面的Sleuth的监听器监听,并生成相应的 Trace 和 Span 信息写进http报文头里面,并同时向Zipkin服务端上传这些信息,如图所示。

主要方式有两种,一种是消息总线的方式如RabbitMq发送,还有一种是http报文的方式发送,向 Zipkin 服务端发送gzip的数据包,服务端接收到gzip的数据包进行解析,根据每个调用链路汇总成调用链路的信息,这里注意,每个 Zipkin Client 里面如果设置了登录验证,并不会影响Zipkin Server的信息收集,因为 Client 端会自动上传gzip的数据包给 Server 端,而无需 Server 端去调用 Client 端的接口去统计信息,Client 端在生成 Trace 统计信息的同时,如果配置了 MDC 或者在 logback 日志中集成了日志收集工具 logstash,则可以在 Client 端的控制台读到这些 Trace 和 Span 的信息,对每个 Span 的信息都会有对应的 Annotation 进行声明。

Span 的 Annotation 信息

这些 Annotation 分为四种类型:

  1. cs : Client Sent,这个标识着 Span的开始。

  2. sr : Server Received,这个标识着服务端接收到客户端发送请求的信息。Sleuth还可以根据 cs 和 sr 的时间戳来计算服务调用的延时。

  3. ss : Server Sent,这个标识表示服务端接收到客户端后要返回 response 信息。

  4. cr : Client Received,这个标识表示客户端收到服务端返回的 response 信息。

这几个注解反应了一次完整的服务间调用的信息,这些注解结合 Span id 信息可以从不同的应用汇总成调用链路的 Trace 信息,也就是说一次 Trace 的信息如果经过了 A 应用、B 应用,那么 Sleuth 会从 A 应用汇总对B应用调用产生的注解信息 Client Sent 和 Client Received,再从 B 应用汇总对 A 应用调用产生的 Server Received 和 Server Sent,A 应用根据自己调用信息组装成 Span 和携带相应的 Annotation 以gzip包的方式通过http发送给 Zipkin Server,B 应用像 A 应用一样也会组装这些信息给 Zipkin Server,Zipkin Server会根据 A 应用和 B 应用的信息汇总成统计信息展示在 Zipkin UI上。

Span的生命周期

  1. start:开始对Span命名和记录开始时间戳

  2. close:结束时记录结束时间戳并检查属性 exportable 然后汇总给 Zipkin,然后移除出当前的线程。

  3. continue:为 Span 新建实例并拷贝继续进行的 Span

  4. detach:Span 没有 stop 或者 close,仅仅是移出当前的线程。

  5. create with explicit parent:在另外的一个线程重新创建一个 Span 并且明确它的 parent。

Span 的存储方式

在 Zipkin Server里面有很多种存储方式,但是比较主流的有这两种:

  1. 放在内存中存储。

  2. 放在mysql中存储。 
    放在内存中的随着服务端的启动会出清空历史数据,如果想持久化保留这些数据,可以选择 mysql 的方式存储。 
    mysql配置方式参考:Stack Overflow 网友提供的参考方案 
    mysql 配置后有两个表,如图














本文转自wks9751CTO博客,原文链接:http://blog.51cto.com/wks97/2074615 ,如需转载请自行联系原作者



相关实践学习
分布式链路追踪Skywalking
Skywalking是一个基于分布式跟踪的应用程序性能监控系统,用于从服务和云原生等基础设施中收集、分析、聚合以及可视化数据,提供了一种简便的方式来清晰地观测分布式系统,具有分布式追踪、性能指标分析、应用和服务依赖分析等功能。 分布式追踪系统发展很快,种类繁多,给我们带来很大的方便。但在数据采集过程中,有时需要侵入用户代码,并且不同系统的 API 并不兼容,这就导致了如果希望切换追踪系统,往往会带来较大改动。OpenTracing为了解决不同的分布式追踪系统 API 不兼容的问题,诞生了 OpenTracing 规范。OpenTracing 是一个轻量级的标准化层,它位于应用程序/类库和追踪或日志分析程序之间。Skywalking基于OpenTracing规范开发,具有性能好,支持多语言探针,无侵入性等优势,可以帮助我们准确快速的定位到线上故障和性能瓶颈。 在本套课程中,我们将全面的讲解Skywalking相关的知识。从APM系统、分布式调用链等基础概念的学习加深对Skywalking的理解,从0开始搭建一套完整的Skywalking环境,学会对各类应用进行监控,学习Skywalking常用插件。Skywalking原理章节中,将会对Skywalking使用的agent探针技术进行深度剖析,除此之外还会对OpenTracing规范作整体上的介绍。通过对本套课程的学习,不止能学会如何使用Skywalking,还将对其底层原理和分布式架构有更深的理解。本课程由黑马程序员提供。
相关文章
|
2月前
|
Cloud Native Serverless API
微服务架构实战指南:从单体应用到云原生的蜕变之路
🌟蒋星熠Jaxonic,代码为舟的星际旅人。深耕微服务架构,擅以DDD拆分服务、构建高可用通信与治理体系。分享从单体到云原生的实战经验,探索技术演进的无限可能。
微服务架构实战指南:从单体应用到云原生的蜕变之路
|
7月前
|
前端开发 JavaScript Java
OpenTelemetry × Elastic Observability 系列(一):整体架构介绍
本文介绍了 OpenTelemetry Demo 的整体架构,并演示了如何借助 Elastic Observability 实现链路追踪、日志与指标的统一观测。
225 3
OpenTelemetry × Elastic Observability 系列(一):整体架构介绍
|
5月前
|
缓存 Cloud Native Java
Java 面试微服务架构与云原生技术实操内容及核心考点梳理 Java 面试
本内容涵盖Java面试核心技术实操,包括微服务架构(Spring Cloud Alibaba)、响应式编程(WebFlux)、容器化(Docker+K8s)、函数式编程、多级缓存、分库分表、链路追踪(Skywalking)等大厂高频考点,助你系统提升面试能力。
292 0
|
8月前
|
Cloud Native Serverless 流计算
云原生时代的应用架构演进:从微服务到 Serverless 的阿里云实践
云原生技术正重塑企业数字化转型路径。阿里云作为亚太领先云服务商,提供完整云原生产品矩阵:容器服务ACK优化启动速度与镜像分发效率;MSE微服务引擎保障高可用性;ASM服务网格降低资源消耗;函数计算FC突破冷启动瓶颈;SAE重新定义PaaS边界;PolarDB数据库实现存储计算分离;DataWorks简化数据湖构建;Flink实时计算助力风控系统。这些技术已在多行业落地,推动效率提升与商业模式创新,助力企业在数字化浪潮中占据先机。
475 12
|
运维 监控 持续交付
微服务架构解析:跨越传统架构的技术革命
微服务架构(Microservices Architecture)是一种软件架构风格,它将一个大型的单体应用拆分为多个小而独立的服务,每个服务都可以独立开发、部署和扩展。
3324 36
微服务架构解析:跨越传统架构的技术革命
|
11月前
|
存储 Prometheus Cloud Native
分布式系统架构6:链路追踪
本文深入探讨了分布式系统中的链路追踪理论,涵盖追踪与跨度的概念、追踪系统的模块划分及数据收集的三种方式。链路追踪旨在解决复杂分布式系统中请求流转路径不清晰的问题,帮助快速定位故障和性能瓶颈。文中介绍了基于日志、服务探针和边车代理的数据收集方法,并简述了OpenTracing、OpenCensus和OpenTelemetry等链路追踪协议的发展历程及其特点。通过理解这些概念,可以更好地掌握开源链路追踪框架的使用。
1183 41
|
10月前
|
传感器 监控 安全
智慧工地云平台的技术架构解析:微服务+Spring Cloud如何支撑海量数据?
慧工地解决方案依托AI、物联网和BIM技术,实现对施工现场的全方位、立体化管理。通过规范施工、减少安全隐患、节省人力、降低运营成本,提升工地管理的安全性、效率和精益度。该方案适用于大型建筑、基础设施、房地产开发等场景,具备微服务架构、大数据与AI分析、物联网设备联网、多端协同等创新点,推动建筑行业向数字化、智能化转型。未来将融合5G、区块链等技术,助力智慧城市建设。
528 1
|
11月前
|
人工智能 安全 Java
微服务引擎 MSE:打造通用的企业级微服务架构
微服务引擎MSE致力于打造通用的企业级微服务架构,涵盖四大核心内容:微服务技术趋势与挑战、MSE应对方案、拥抱开源及最佳实践。MSE通过流量入口、内部流量管理、服务治理等模块,提供高可用、跨语言支持和性能优化。此外,MSE坚持开放,推动云原生与AI融合,助力企业实现无缝迁移和高效运维。
500 1
|
Cloud Native API 持续交付
云原生架构下的微服务治理策略与实践####
本文旨在探讨云原生环境下微服务架构的治理策略,通过分析当前面临的挑战,提出一系列实用的解决方案。我们将深入讨论如何利用容器化、服务网格(Service Mesh)等先进技术手段,提升微服务系统的可管理性、可扩展性和容错能力。此外,还将分享一些来自一线项目的经验教训,帮助读者更好地理解和应用这些理论到实际工作中去。 ####
219 0

热门文章

最新文章