分布式一致性算法之Paxos原理剖析

简介: 清楚zk背后leader一致性选举paxos(帕克索斯)原理

概述

Zookeeper集群中,只有一个节点是leader节点,其它节点都是follower节点(实际上还有observer节点,不参与选举投票,在这里我们先忽略,下同)。所有更新操作,必须经过leader节点,leader节点和follower节点之间保持着数据同步和心跳。


客户端使用zookeeper时,可能会连到follower身份的server上,也可能会连到leader身份的server上。

三类角色分工如下:

Leader:处理写请求,单点

Follower:处理客户端请求,参与投票

Observer:不参与leader选举投票,只处理客户端请求

在一个zookeeper集群里,有多少个server是固定的,每个节点有一个唯一id,标识它自己,另外,每个server还有用于选举的IP和port,这些都在配置文件中。一个具体的例子如下:

server.1= server1的IP地址:2888:3888

server.2= server2的IP地址:2888:3888

server.2= server3的IP地址:2888:3888

这里有 3 server ,其 id 分别为 1 2 3 2888 为节点和 leader 交换信息的端口, 3888 为选举端口。这个节点的 id ,在投票时,用户标识参加竞选的节点的身份。

问题:这个leader节点是怎么确定的?

答案:zookeeper系统自己选举出来的,所有server节点(observer除外),都参与这个选举。这样做的好处是:当现在leader挂掉了之后,系统可以重新选举一个节点做leader。

Zookeeper的选举算法能保证:只要超过半数节点还活着,就一定能选举出唯一个一个节点作为leader。

选举发生时机

   当任何一个节点进入looking状态时,选举开始,进入looking状态有如下原因:

   1、节点刚启动,使自己进入选举状态

   2、发现leader节点挂掉了

   Zookeeper中的leader怎么知道follower还活着?follower怎么知道leader还活着?leader会定时向follower发ping消息;follower会定时向leader发ping消息。当发现无法ping通leader时,就会将自己的状态改为LOOKING,并发起新一轮选举。处于选举模式时,zookeeper服务不可用。

一个节点成为leader条件

    一个节点要成为leader,必须得到至少n/2+1(即半数以上节点)投票,实际上,在实现时,还可以考虑其它规则,比如节点权重。

    为什么要保证至少n/2+1的节点同意?因为这样能保证本节点得到多数派的支持。因为每一个节点,只能支持一个节点成为leader,因此,只要一个节点获得至少n/2+1选票,就一定会比其它任何节点得到的选票多。

    这个规则意味着,如果超过半数以上的节点挂掉,zookeeper是选举不出leader节点的,因此,zookeeper集群最多允许n/2节点故障。

要解决的问题

    选举算法目标是确保一定要选出一个唯一的leader节点。这有两层含义:

    1、一定要选出一个节点作为leader

    2、这个leader一定要唯一

    为此,要解决如下问题:

    1、在一次选举中,节点应该把票投给谁?

    规则:每个节点有一个唯一id,在选举中,节点总是把票投给id最大的那个节点,这样,id大的节点更有可能成为leader,天生就是做领导的料。

    2、在一次选举过程中,有些节点由于没有启动而没参加(有些人去国外了,没有赶上这次大选,当他回国后,进入looking状态,要发起选举,怎么办?),后来这个节点启动了,此时要求选举,怎么解决?

    3、运行过程中,leader节点挂掉了,怎么办?

    此时其它节点会发现leader挂了,会发起新一轮选举,最后选出新leader。

尝试解决方案

    1、直接指定一个节点做leader,例如,永远都让id最大节点当leader,这个想法最简单。问题:这个节点挂了怎么办?这会出现单点问题。

    2、每次选举中,让活着节点中,id最大节点当leader。问题:1、其它节点怎么知道活着节点中,谁id最大?

选举算法流程

    选举开始时,每个节点为自己生成一张投票,推荐自己成为leader,并把投票发送给其它节点,这相当于paxos算法中的proposer角色。接下来,节点启动一个接收线程接收其它节点发送过来的投票,并对选票进行处理,这相当于paxos中的acceptor角色。简单说,节点之间通过这种消息发送(投票),最终选举出leader。

    当收到其他它节点的选票之后,会和自己的投票比较,如果比自己的投票好(比如推荐的leader的id更大,选举轮数更新),则更新自己的选票,接下来把收到的选票放在选票列表里(该列表存储了所有节点的投票,是一个key-value结构,key为节点的id,value为该节点的投票)。并再次把自己的投票发送给其它节点。

    接下来节点会统计选票列表中每个节点获得的票数,如果有一个节点获得超过半数的选票,则认为该节点是leader。如果本节点就是,则将自身的状态置为leading,表明自己是leader;否则将自己的状态置为following,表明自己是follower。

    通过若干轮的消息交换,最终,会有一个节点获得超过一半的选票而成为leader。这种方法的精髓在于,每个节点在不需要获得所有节点的信息(投票结果)的前提下,达成一致意见,选出leader。

算法中涉及的重要变量

logicalclock

volatile long logicalclock;

     表示选举轮数,在 lookForLeader 开始的时候会加 1, ,另外,在收到其他节点的投票信息时,如果其它节点的 electionEpoch 比本值大,本值会被赋成 electionEpoch 。也就是说,每次节点启动时,该值为 0 ?这个值只在节点存活的时候有意义?即节点重启后,该值为 0

ProposedLeader

    long proposedLeader;

    该值为本节点推荐的leader的id,初始时为自己,后面会更新,这个值不会从文件中读,也就是说,重启后会自动使用本节点id。getInitId源代码如下:

    public long getId() {

       return myid;

    }

ProposedZxid

    long proposedZxid;

    本节点建议的zxid,在starter函数中,被初始化为-1;在updateProposal函数中,会更新该变量的值。

    updateProposal(getInitId(), getInitLastLoggedZxid(), getPeerEpoch());

        private long getInitLastLoggedZxid(){

        if(self.getLearnerType() == LearnerType.PARTICIPANT)

            return self.getLastLoggedZxid();

        else return Long.MIN_VALUE;

 }

 public long getLastLoggedZxid() {

     if (!zkDb.isInitialized()) {

           loadDataBase();

     }

     return zkDb.getDataTreeLastProcessedZxid();

     }

ProposedEpoch

    long proposedEpoch;

    表示本节点推荐的选举轮数,在updateProposal函数更新选票时,会更新该值。节点启动初始化时候,第一次调用updateProposal,会把proposedEpoch的值赋为getPeerEpoch,而该函数又会调用getCurrentEpoch,getCurrentEpoch的代码如下:

    public long getCurrentEpoch() throws IOException {

             if (currentEpoch == -1) {

                  currentEpoch = readLongFromFile(CURRENT_EPOCH_FILENAME);

             }

             return currentEpoch;

    }

    这表明,该值会从日志文件中读出来。也就是说,节点重启后,会使用上次活着的时候的值。

     为什么有了zxid还需要epochzxid是用来表示数据的新旧,而epoch是用来表示选举的轮数。

运行实例

    假设 zookeeper 集群中有 3 个节点,其 ID 分别为 1 2 3 。整个集群开始运行时,每个节点 zxid 都为 1
  • 节点123启动后,都进入looking状态,开始leader选举。每个节点的proposedLeader即推荐的leader都是自己;logicalclock值都为1;建议的proposedZxid值都为1;建议的proposedEpoch值都为1;投票列表为每个节点投自己的一票(1->1,2->2,3->3)。节点1首先向23发送自己的投票消息:

  • 节点2、3收到节点1的投票消息,首先查看1的状态,发现1处于looking状态。接下来,判断1发来的electionEpoch和本地逻辑时钟logicalclock的大小,发现两者相等(都为1)。接着判断leader、zxid、peerEpoch和本地proposedLeader、proposedZxid、proposedEpoch的大小,节点2发现节点1推荐的leader的id比自己小(1<2),节点3也发现节点1推荐的leader的id比自己的小(1<3),因此不用更新自己的投票。接下来,节点2、3把节点1的投票放入自己的投票列表中,这样,节点2收到的投票的列表为:

         1->1

         2->2

         节点3的为:

         1->1

         3->3

     节点2、3再判断此次投票是否可以结束,发现不能结束。如下图所示:

  • 节点2向节点13发送自己的投票信息,节点3由于发送线程的故障原因,投票信息一直没有出去:

      在2发出的投票信息中,选择的leader是它自己。

  • 节点13收到节点2的投票消息。节点1比较自己的logcalclock和节点2发来的electionEpoch的大小,二者相等,接下来比较leaderzxidpeerEpoch和本地proposedLeaderproposedZxidproposedEpoch的大小,发现节点2推荐的leaderid2)比自己的proposedLeader1)大,于是更新自己的选票,将proposedLeader改为2。然后,节点12的选票(2->2)放入自己收到的投票箱中,接着判断投票是否可以结束(调用函数termPredicate),由于节点2被超过半数的节点选择(12),因此选举可以结束,由于自己不是leader,节点1将自己的状态改为following
  • 节点3比较自己的logcalclock和节点2发来的electionEpoch的大小,二者相等,接下来比较leaderzxidpeerEpoch和本地proposedLeaderproposedZxidproposedEpoch的大小,发现节点2推荐的leaderid2)比自己的proposedLeader3)小,不用更新自己的选票。然后,节点32的选票(2->2)放入自己收到的投票箱中,接着判断投票是否可以结束(调用函数termPredicate),由于没有节点获得超过半数的选票,因此选举继续。
  • 节点1收到节点2的选票,更新选票后,再向节点13发送自己的投票信息:此时,节点1选的leader已经变为2,而且节点1的状态已经变成following
  • 节点2在收到节点1的选票信息后,判断节点1的状态,发现为following,这表明,节点1已经认为leader选出来了,并且是2。节点2首先更新自己的收票箱,将1的投票改为2,接着,判断选举是否结束,发现确实可以结束,节点2就更新自己的状态,由于发现自己是被半数以上人推荐的leader,因此把自己的状态改为leading同样,节点3在收到节点1的投票信息后,判断节点1的状态,发现为following,这表明,节点1已经认为leader选出来了,并且是2。节点3首先更新自己的收票箱,将1的投票改为2,接着,判断选举是否结束,发现确实可以结束,节点3就更新自己的状态,由于发现自己不是被半数以上人推荐的leader,因此把自己的状态改为following至此,选举结束,选出来的leader213都为follower


相关文章
|
2月前
|
消息中间件 运维 监控
《聊聊分布式》BASE理论 分布式系统可用性与一致性的工程平衡艺术
BASE理论是对CAP定理中可用性与分区容错性的实践延伸,通过“基本可用、软状态、最终一致性”三大核心,解决分布式系统中ACID模型的性能瓶颈。它以业务为导向,在保证系统高可用的同时,合理放宽强一致性要求,并借助补偿机制、消息队列等技术实现数据最终一致,广泛应用于电商、社交、外卖等大规模互联网场景。
|
2月前
|
数据采集 监控 NoSQL
优化分布式采集的数据同步:一致性、去重与冲突解决的那些坑与招
本文讲述了作者在房地产数据采集项目中遇到的分布式数据同步问题,通过实施一致性、去重和冲突解决的“三板斧”策略,成功解决了数据重复和同步延迟问题,提高了系统稳定性。核心在于时间戳哈希保证一致性,URL归一化和布隆过滤器确保去重,分布式锁解决写入冲突。
177 2
 优化分布式采集的数据同步:一致性、去重与冲突解决的那些坑与招
|
3月前
|
负载均衡 算法 调度
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
205 11
|
3月前
|
机器学习/深度学习 传感器 算法
基于不变扩展卡尔曼滤波器RI-EKF的同时定位与地图构建SLAM算法的收敛性和一致性特性研究(Matlab代码实现)
基于不变扩展卡尔曼滤波器RI-EKF的同时定位与地图构建SLAM算法的收敛性和一致性特性研究(Matlab代码实现)
125 2
|
3月前
|
并行计算 算法 调度
基于串行并行ADMM算法的主从配电网分布式优化控制研究(Matlab代码实现)
基于串行并行ADMM算法的主从配电网分布式优化控制研究(Matlab代码实现)
246 0
|
3月前
|
并行计算 算法 安全
【ADMM、碳排放】基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究【IEEE6节点、IEEE30节点、IEEE118节点】(Matlab代码实现)
【ADMM、碳排放】基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究【IEEE6节点、IEEE30节点、IEEE118节点】(Matlab代码实现)
217 0
机器学习/深度学习 算法 自动驾驶
666 0
|
3月前
|
算法 安全 Python
【顶级EI复现】分布式电源选址定容的多目标优化算法(Matlab代码实现)
【顶级EI复现】分布式电源选址定容的多目标优化算法(Matlab代码实现)
143 1
|
3月前
|
机器学习/深度学习 算法 搜索推荐
从零开始构建图注意力网络:GAT算法原理与数值实现详解
本文详细解析了图注意力网络(GAT)的算法原理和实现过程。GAT通过引入注意力机制解决了图卷积网络(GCN)中所有邻居节点贡献相等的局限性,让模型能够自动学习不同邻居的重要性权重。
579 0
从零开始构建图注意力网络:GAT算法原理与数值实现详解
|
3月前
|
传感器 机器学习/深度学习 算法
【无人机编队】基于麻雀算法分布式无人机群自适应航迹规划和碰撞检测研究(Matlab代码实现)
【无人机编队】基于麻雀算法分布式无人机群自适应航迹规划和碰撞检测研究(Matlab代码实现)
108 2

热门文章

最新文章