人工智能系统安全性分析

简介: 人工智能研究人员轻易地欺骗了一个图像识别系统,使得香蕉被错误地识别为烤面包机。这引发了一系列安全性的担忧,如何确保人工智能系统的安全呢?

本周,微软和阿里巴巴引发了新的担忧,即机器人将很快抢走大部分人的工作。这两家公司分别透露,他们的人工智能系统在阅读理解测试中击败了人类。这个测试的目的是训练人工智能回答维基百科文章的问题。
就像已经部署在商业图片应用中的图像识别软件一样,这些系统给人的感觉是机器已经变得越来越有能力复制人类的认知能力:识别图像或声音,现在加速阅读文本段落,并以人类水平的准确性来反馈答案。
然而,机器的智能并不总是那么准确。麻省理工学院的研究生Anish Athalye说:“在一些领域,神经网络实际上是超人的,人类远不及它们。但它们有一种奇怪的特性,似乎我们可以很容易地欺骗他们。”
AI01
在香蕉的图片附近放置了一个类似于“迷幻烤面包机”的对抗贴,使得谷歌图像识别系统将图片的内容识别为烤面包机,而不是相关的水果。
在LabSix的方法中,一种算法会稍微修改图像中每个像素的颜色或亮度。尽管你或我的照片看起来是一样的,但这些微妙的变化使系统把它解释为完全不同的东西。Athalye说,“如果你看到有人在现实世界中竖起了一个路标,看起来尚不清晰,那么你可能会认为它像是限速牌,但你的自动驾驶汽车却认为这是完全不同的,那就可怕了。”
对于烤面包机来说,谷歌大脑采取了不同的策略。他们不想单独改变图像,而是想要开发一种可以放置在任何场景中都适应的技术方案。这意味着创造一个全新的独特形象——一它会使深度学习系统混乱,使它无法专注于其他项目。烤面包机需要脱颖而出,而不是混在里面不被识别。谷歌的Tom Brown在一封电子邮件中写道:“鉴于补丁只控制了它所在范围内的像素点,我们发现补丁的使用变得非常突出。传统的恶意攻击改变了单个图像中的所有像素点。因此,对于这个对抗性的补丁,我们会用大量的像素来改变一些像素。”
为了在实验室之外工作,补丁也必须对现实世界中的视觉噪声具有弹性。在之前的研究中,改变图像的方向或亮度可以欺骗系统。一幅经过修改的猫的照片被归类为鳄梨酱,但是把猫转到一边,系统又知道它是猫了。相比之下,烤面包机可以在任何亮度或方向上呈现,但是仍然会破坏系统。Brown写道:“这更难以开发,因为这意味着要在各种模拟场景中训练这个补丁,这样才能找到一个在所有这些场景中都能成功的补丁。”
尽管这些例子很愚蠢,但潜伏在现实世界却是致命的。Athalye推测,恶意的攻击可能会让一辆自动驾驶汽车忽视一个停车标志。或者它可以在机场行李检查中伪装出炸弹的X射线图像。Athalye和布朗的研究目标是在部署前帮助识别技术的弱点。
纽约大学的心理学教授Gary Marcus认为人工智能很容易被这种方式欺骗,因为机器不理解整个场景。Marcus说,人工智能可以识别对象,但它无法理解对象是什么或它使用了什么。它不能真正理解事物之间的因果关系,也不能真正理解谁在为谁做什么和为什么。
在关于AI系统的头条新闻阅读理解测试之后,Marcus对结果进行了贬低,称机器所做的事情与真正的理解没有任何关系。Marcus在推特上写道:“测试表明,机器可以在文本中高亮显示相关段落,但不会让他们理解这些段落。”
Marcus认为,该领域应该从认知心理学的角度去开发一个更深层次的理解软件,而不是在成千上万的例子中训练人工智能系统。然而,深度学习可以识别出一条狗,甚至可以从它以前从来没有见过的图像中对它的品种进行分类,但它不知道是人在遛狗,还是狗在遛人。它不理解狗到底是什么,它是如何与世界互动的。Marcus说:“我们需要一种不同类型的人工智能架构,这是一种解释,而不仅仅是模式识别。”在这种情况下,我们的工作至少在一段时间内是安全的。

以上为译文。

文章原标题《How to Hack an Intelligent Machine》,译者:黄小凡,审校:袁虎。

文章为简译,更为详细的内容,请查看原文

相关文章
|
5月前
|
机器学习/深度学习 人工智能 测试技术
EdgeMark:嵌入式人工智能工具的自动化与基准测试系统——论文阅读
EdgeMark是一个面向嵌入式AI的自动化部署与基准测试系统,支持TensorFlow Lite Micro、Edge Impulse等主流工具,通过模块化架构实现模型生成、优化、转换与部署全流程自动化,并提供跨平台性能对比,助力开发者在资源受限设备上高效选择与部署AI模型。
512 9
EdgeMark:嵌入式人工智能工具的自动化与基准测试系统——论文阅读
|
4月前
|
人工智能 IDE 开发工具
拔俗人工智能辅助评审系统:如何用技术为“把关”提效
人工智能辅助评审系统融合大模型、提示工程与业务流程,实现上下文深度理解、场景化精准引导与无缝集成。通过自动化基础审查,释放专家精力聚焦核心决策,提升评审效率与质量,构建人机协同新范式。(239字)
409 0
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
拔俗AI人工智能评审管理系统:用技术为决策装上“智能导航”
AI评审系统融合NLP、知识图谱与机器学习,破解传统评审效率低、标准不一难题。通过语义解析、智能推理与风险预判,构建标准化、可复用的智能评审流程,助力项目质量与效率双提升。(238字)
360 0
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
1187 55
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
627 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
10月前
|
人工智能 自然语言处理 API
MCP与A2A协议比较:人工智能系统互联与协作的技术基础架构
本文深入解析了人工智能领域的两项关键基础设施协议:模型上下文协议(MCP)与代理对代理协议(A2A)。MCP由Anthropic开发,专注于标准化AI模型与外部工具和数据源的连接,降低系统集成复杂度;A2A由Google发布,旨在实现不同AI代理间的跨平台协作。两者虽有相似之处,但在设计目标与应用场景上互为补充。文章通过具体示例分析了两种协议的技术差异及适用场景,并探讨了其在企业工作流自动化、医疗信息系统和软件工程中的应用。最后,文章强调了整合MCP与A2A构建协同AI系统架构的重要性,为未来AI技术生态系统的演进提供了方向。
1504 62
|
安全 Android开发 数据安全/隐私保护
深入探讨iOS与Android系统安全性对比分析
在移动操作系统领域,iOS和Android无疑是两大巨头。本文从技术角度出发,对这两个系统的架构、安全机制以及用户隐私保护等方面进行了详细的比较分析。通过深入探讨,我们旨在揭示两个系统在安全性方面的差异,并为用户提供一些实用的安全建议。
|
11月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
649 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
1188 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能

热门文章

最新文章