pandas.merge合并

简介: Help on function merge in module pandas.core.reshape.merge: merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, .
Help on function merge in module pandas.core.reshape.merge:

merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False)
    Merge DataFrame objects by performing a database-style join operation by
    columns or indexes.
    
    If joining columns on columns, the DataFrame indexes *will be
    ignored*. Otherwise if joining indexes on indexes or indexes on a column or
    columns, the index will be passed on.
    
    Parameters
    ----------
    left : DataFrame
    right : DataFrame
    how : {'left', 'right', 'outer', 'inner'}, default 'inner'
        * left: use only keys from left frame, similar to a SQL left outer join;
          preserve key order只保留左表的所有数据        
     * right: use only keys from right frame, similar to a SQL right outer join;
          preserve key order只保留右表的所有数据
      * outer: use union of keys from both frames, similar to a SQL full outer
          join; sort keys lexicographically保留两个表的所有信息
     * inner: use intersection of keys from both frames, similar to a SQL inner
          join; preserve the order of the left keys只保留两个表中公共部分的信息
  on : label or list
        Field names to join on. Must be found in both DataFrames. If on is
        None and not merging on indexes, then it merges on the intersection of
        the columns by default.
    left_on : label or list, or array-like
        Field names to join on in left DataFrame. Can be a vector or list of
        vectors of the length of the DataFrame to use a particular vector as
        the join key instead of columns
    right_on : label or list, or array-like
        Field names to join on in right DataFrame or vector/list of vectors per
        left_on docs
    left_index : boolean, default False
        Use the index from the left DataFrame as the join key(s). If it is a
        MultiIndex, the number of keys in the other DataFrame (either the index
        or a number of columns) must match the number of levels
    right_index : boolean, default False
        Use the index from the right DataFrame as the join key. Same caveats as
        left_index
    sort : boolean, default False
        Sort the join keys lexicographically in the result DataFrame. If False,
        the order of the join keys depends on the join type (how keyword)
    suffixes : 2-length sequence (tuple, list, ...)
        Suffix to apply to overlapping column names in the left and right
        side, respectively
    copy : boolean, default True
        If False, do not copy data unnecessarily
    indicator : boolean or string, default False
        If True, adds a column to output DataFrame called "_merge" with
        information on the source of each row.
        If string, column with information on source of each row will be added to
        output DataFrame, and column will be named value of string.
        Information column is Categorical-type and takes on a value of "left_only"
        for observations whose merge key only appears in 'left' DataFrame,
        "right_only" for observations whose merge key only appears in 'right'
        DataFrame, and "both" if the observation's merge key is found in both.
    
        .. versionadded:: 0.17.0
    
    Examples
    --------
    
    >>> A              >>> B
        lkey value         rkey value
    0   foo  1         0   foo  5
    1   bar  2         1   bar  6
    2   baz  3         2   qux  7
    3   foo  4         3   bar  8
    
    >>> A.merge(B, left_on='lkey', right_on='rkey', how='outer')
       lkey  value_x  rkey  value_y
    0  foo   1        foo   5
    1  foo   4        foo   5
    2  bar   2        bar   6
    3  bar   2        bar   8
    4  baz   3        NaN   NaN
    5  NaN   NaN      qux   7
    
    Returns
    -------
    merged : DataFrame
        The output type will the be same as 'left', if it is a subclass
        of DataFrame.
    
    See also
    --------
    merge_ordered
    merge_asof
目录
相关文章
|
3月前
|
SQL 索引 Python
Pandas中DataFrame合并的几种方法
Pandas中DataFrame合并的几种方法
217 0
|
1月前
|
Python
Pandas 常用函数-数据合并
Pandas 常用函数-数据合并
36 1
|
7月前
|
数据处理 索引 Python
使用pandas的merge()和join()函数进行数据处理
使用pandas的merge()和join()函数进行数据处理
120 2
|
3月前
|
SQL 数据采集 索引
聚焦Pandas数据合并:掌握merge方法
聚焦Pandas数据合并:掌握merge方法
43 0
|
4月前
|
数据处理
R语言数据合并:掌握`merge`与`dplyr`中`join`的巧妙技巧
【8月更文挑战第29天】如果你已经在使用`dplyr`进行数据处理,那么推荐使用`dplyr::join`进行数据合并,因为它与`dplyr`的其他函数(如`filter()`、`select()`、`mutate()`等)无缝集成,能够提供更加流畅和一致的数据处理体验。如果你的代码中尚未使用`dplyr`,但想要尝试,那么`dplyr::join`将是一个很好的起点。
|
4月前
|
存储 关系型数据库 数据库
如何在 Pandas 中合并数据框?
【8月更文挑战第30天】
23 0
|
7月前
|
索引 Python
如何使用Pandas进行数据合并?
Pandas提供`merge()`, `join()`, `concat()`等方法进行数据合并。基本步骤包括导入pandas库、创建或加载DataFrame,然后调用这些方法合并数据。示例中展示了如何使用`merge()`和`join()`:创建两个DataFrame `df1`和`df2`,通过`merge()`基于索引合并,以及`join()`进行外连接合并。
70 0
|
索引 Python
pandas数据合并
pandas数据合并
76 0
|
索引 Python
Pandas 的Merge函数详解
在日常工作中,我们可能会从多个数据集中获取数据,并且希望合并两个或多个不同的数据集。这时就可以使用Pandas包中的Merge函数。在本文中,我们将介绍用于合并数据的三个函数
187 1
|
SQL 数据处理 索引
pandas数据处理之合并与拼接
在许多应用中,数据可能来自不同的渠道,在数据处理的过程中常常需要将这些数据集进行组合合并拼接,形成更加丰富的数据集。pandas提供了多种方法完全可以满足数据处理的常用需求。具体来说包括有join、merge、concat、append等。
237 0