表格存储最佳实践:一种用于存储时间序列数据的表结构设计

本文涉及的产品
对象存储 OSS,20GB 3个月
阿里云盘企业版 CDE,企业版用户数5人 500GB空间
文件存储 NAS,50GB 3个月
简介: 在时间序列存储的场景,例如监控数据或者日志数据,通常比较难解决的是写入的问题,传统的数据库难以承载如此大数据量、高并发的写入压力。 表格存储能够提供非常优秀的写入能力,在阿里内部得到到了正好的实践和证明。但是若要发挥其强度的写入能力,需要有一个良好的表结构设计。 本篇文章给出了一个存储时间序

在表格存储的数据模型这篇文章中提到:


在表格存储内部,一个表在创建的时候需要定义主键,主键会由多列组成,我们会选择主键的第一列作为分片键。当表的大小逐渐增大后,表会分裂,由原来的一个分区自动分裂成多个分区。触发分裂的因素会有很多,其中一个很关键的因素就是数据量。分裂后,每个分区会负责某个独立的分片键范围,每个分区管理的分片键范围都是无重合的,且范围是连续的。在后端会根据写入数据行的分片键的范围,来定位到是哪个分片。


表会以分区为单位,被均匀的分配到各个后端服务器上,提供分布式的服务。



        在表格存储的最佳实践中提出,一个设计良好的主键,需要避免访问压力集中在一个小范围的连续的分片键上,也就是说避免热点分片。设计良好的表结构,整张表的访问压力能够均匀的分散在各个分片上,这样才能充分利用后端服务器的能力。


        那在使用表格存储来存储时间序列数据时,我们应该如何设计表的结构,避免热点分片的问题?


        假设我们需要设计一张表,用于存储监控信息,监控信息包括:时间戳(timestamp)、监控指标名称(metric)、主机名(host)和监控指标值(value)。而我们的查询场景为,指定监控指标名称和时间范围,查询该监控指标的所有值。通常我们会这样设计我们的表结构:



表设计一:




该设计以metric列为分片键,能够满足查询的场景,但是有很严重的分片热点问题。假设一个metric下每秒采集一个点,而我们有上百台设备,则该分片每秒需要能够提供上百的写入能力,这点也没有问题。但是由于使用了metric作为分片键,metric的值为常量,随着数据量的上涨,其无法再进行分裂,会导致该分片下的数据量不断膨胀,可能超过一台物理机所能承受的上限,存在分片数据量的热点。


为了解决这个问题,我们对分片键做一个调整:


表设计二:



我们将第一列主键和第二列主键合并为一列主键作为分片键,在数据的分布模式上并没有什么变更,但是引入了时间这个维度后,我们避免了分片数据量的热点。但是当host规模变大,从上百膨胀到上万,则该张表需要每秒提供上万并发的写入能力。我们需要将该表的写入压力均匀的分散到各个分片上,但是由于其数据的特点,每次写入的数据都是最新时间的数据,其写入压力永远集中在最新时间戳所在的分片上。


为了将写入压力均匀的分散到分片上,我们再对表做一个重新设计:


表设计三:



我们引入一个新的列 - bucket,在每行数据写入前,为每行数据分配一个桶(可随机分配),以桶的编号为分片键(HBase中有类似的解决方案,称为salted key)。桶的个数任意,可扩张,在写入之前将数据预分桶之后,也就解决了写入压力热点的问题,因为写入压力永远是均匀分配在各个桶上的。可根据具体的写入压力,决定桶的个数。


数据分桶后,如果需要读取完整的数据,需要在每个桶内都分别执行一遍查询后将数据进行汇总,可以使用我们SDK提供的异步接口,来并行的查询每个桶,提高查询的效率。


总结

在时间序列存储的场景,例如监控数据或者日志数据,通常比较难解决的是写入的问题,传统的数据库难以承载如此大数据量、高并发的写入压力。


表格存储能够提供非常优秀的写入能力,在阿里内部得到到了正好的实践和证明。但是若要发挥其强度的写入能力,需要有一个良好的表结构设计。


本篇文章给出了一个存储时间序列数据库的最佳实践,供参考。但表结构设计并不是千篇一律的,需要根据不同的业务场景设计做灵活的调整,欢迎一起探讨。

相关实践学习
消息队列+Serverless+Tablestore:实现高弹性的电商订单系统
基于消息队列以及函数计算,快速部署一个高弹性的商品订单系统,能够应对抢购场景下的高并发情况。
阿里云表格存储使用教程
表格存储(Table Store)是构建在阿里云飞天分布式系统之上的分布式NoSQL数据存储服务,根据99.99%的高可用以及11个9的数据可靠性的标准设计。表格存储通过数据分片和负载均衡技术,实现数据规模与访问并发上的无缝扩展,提供海量结构化数据的存储和实时访问。 产品详情:https://www.aliyun.com/product/ots
目录
相关文章
|
存储 索引
表格存储根据多元索引查询条件直接更新数据
表格存储是否可以根据多元索引查询条件直接更新数据?
124 3
|
3天前
|
存储 人工智能 NoSQL
Tablestore深度解析:面向AI场景的结构化数据存储最佳实践
《Tablestore深度解析:面向AI场景的结构化数据存储最佳实践》由阿里云专家团队分享,涵盖Tablestore十年发展历程、AI时代多模态数据存储需求、VCU模式优化、向量检索发布及客户最佳实践等内容。Tablestore支持大规模在线数据存储,提供高性价比、高性能和高可用性,特别针对AI场景进行优化,满足结构化与非结构化数据的统一存储和高效检索需求。通过多元化索引和Serverless弹性VCU模式,助力企业实现低成本、灵活扩展的数据管理方案。
27 12
|
6月前
|
DataWorks NoSQL 关系型数据库
DataWorks产品使用合集之如何从Tablestore同步数据到MySQL
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
8月前
|
分布式计算 DataWorks API
DataWorks常见问题之按指定条件物理删除OTS中的数据失败如何解决
DataWorks是阿里云提供的一站式大数据开发与管理平台,支持数据集成、数据开发、数据治理等功能;在本汇总中,我们梳理了DataWorks产品在使用过程中经常遇到的问题及解答,以助用户在数据处理和分析工作中提高效率,降低难度。
|
8月前
|
DataWorks NoSQL 关系型数据库
可以使用dataworks从tablestore同步数据到mysql吗?
可以使用dataworks从tablestore同步数据到mysql吗?
82 1
|
存储 消息中间件 监控
Tablestore 物联网存储全面升级 -- 分析存储公测
物联网存储功能介绍随着物联网技术的快速发展,物联网已广泛应用于制造业、能源、建筑、医疗、交通、物流仓储等多个领域,物联网的应用能够有效节约资源、提高效率、保障安全以及降低成本,帮助各行业实现可持续发展目标。在物联网场景中根据数据特点进行分类,数据主要包括设备元数据、设备消息数据和设备时序数据三种类型,不同类型数据的存储需求不同。物联网场景中不同类型数据的存储核心需求如下:设备元数据:主要数据为设备
290 0
Tablestore 物联网存储全面升级 -- 分析存储公测
|
NoSQL 开发工具
TableStore表格存储(阿里云OTS)多行数据操作查询,支持倒序,过滤条件和分页
1. 批量读取操作 批量读取操作可以通过多种方式进行,包括: GetRow:根据主键读取一行数据。 BatchGetRow:批量读取多行数据。 GetRange:根据范围读取多行数据。
965 0
|
存储 消息中间件 NoSQL
物联网数据通过规则引擎流转到OTS|学习笔记
快速学习物联网数据通过规则引擎流转到OTS
353 15
物联网数据通过规则引擎流转到OTS|学习笔记
|
存储 消息中间件 SQL
Flink Table Store 0.3 构建流式数仓最佳实践
阿里巴巴高级技术专家,Apache Flink PMC 李劲松(之信),在 FFA 2022 实时湖仓的分享。
Flink Table Store 0.3 构建流式数仓最佳实践
|
存储 负载均衡 开发者
表格存储数据多版本介绍| 学习笔记
快速学习表格存储数据多版本介绍。
表格存储数据多版本介绍| 学习笔记