Web开发工程师转型机器学习的实战经验

简介: 历经两个月对深度学习和计算机视觉领域进行探索,获得一些经验与总结。

        作为一名Web开发人员,我发现计算机视觉和机器学习领域的快速发展是让人感到兴奋,但是我没有任何使用这些技术的背景经验。 最终,我决定用两年的时间来转型。

开始学习

 在一本涵盖深度学习和计算机视觉的书出版的时候,我开始了这段转型之旅。 来自PyImageSearch.com的作者Adrian Rosebrock编写了一个三卷巨著,它涵盖了计算机视觉和深度学习的高层思想和低层应用。在探索深度学习的同时,我遇到了对线性回归、朴素贝叶斯(Naive Bayesian)应用、随机森林/决策树学习等诸多新的算法。

 5d0cfbe8946ea83752704370cc3d55aeee230fd6

    我花了几个星期的时间阅读这本书,并且把所有已经读过的各种博文和数学概念的队列、抽象思维的概念以及它实际的编程应用联系起来。我很快就读完了这本书,从而更好地理解了如何从整体上走进这个领域。我获得的最大的结论:筹备自己的工具和硬件来构建计算机视觉软件。

 硬件实现

        受到启发后,我找到一个树莓派(Raspberry Pi)和RPI摄像机用来分析视频流。我从来没想过配置树莓派会花费这么长时间。最初, 我希望仅仅用视频流启动和运行树莓派,并且处理计算机上的视频。我尽可能的使树莓派的操作系统可以正常工作。一旦我意识到什么出了问题,然后我就不小心安装了错误的图像驱动,并出乎意外的安装了导致冲突的软件。最初我以为的视频处理过程,结果变成了一个多小时的调试噩梦。

        到目前为止,我已经意识到调试机器是开始机器学习和计算机视觉所涉及到的一个大方面。

 9eae4e868df157cdd014fe7c3c401b00c4915339

                       https://aiyprojects.withgoogle.com/vision#list-of-materials

我最初基于树莓派的灵感是一个想法,配置一个带有摄像头和GPS信号的简单设备。这个想法是考虑到未来有多少车辆需要许多台摄像机进行导航,无论是什么样的交通工具,都将需要许多的摄像机导航。无论是出于保险目的还是基本功能的需要,可以想象出未来将会创建和使用大量的视频片段。在这个过程中,将会有大量的媒体库被闲置,并且成为了解世界的一个庞大的数据库。

我结束了探索树莓派的计算机视觉能力的工作,但是也没如我所愿成功的获得任何有趣的成果。我发现有很多价格便宜的类树莓派设备,在一个比整个树莓派小很多的的PCB板上仍具有互通性和摄像功能。我意识到与其走硬件路线,还不如使用旧的iPhone来开发一些软件。

我在探索深度学习的硬件组成上进行了简单的尝试,这使我意识到应该尽可能的坚持使用软件。当软件部分不能解决问题时,包含一个新的变量仅仅只会增加其复杂性。

更多关于树莓派的文章点击这里!

开源工具

在到处寻找机器学习资源的第一个月中,我发现了很多启动和运行都非常容易的开源工具。我了解到FANG科技公司提供了很多专有的服务,但是并不能确定他们是如何和那些开源方案竞争的。在IBM, Google, AmazonMicrosoft上可以被用作SAAS工具的图像识别以及OCR工具使用起来比较简单。令我感到惊讶的是,有很多优秀的开源方案值得配置来避免一些不必要的依赖项。     

a5445dde0c2843c9e9b3c1ca6400072797d8d832

例如,几年前,我启动了一个IOS应用程序来收集和分享涂鸦照片。我从 Instagram Flickr等带有地理标记图像的公开API对图像进行索引。利用这些资源,我使用像标签和位置数据这样的基本特征来区分图像是否被涂鸦。最初,我每周开始对数千张图像进行索引,很快每月就扩大到数十万张。我很快的注意到,编入索引的很多图像都没有涂鸦,取而代之的则是对我努力建立的社区具有破坏性的图像。我无法阻止人们自己拍摄的低质量的图像,或者从别人的种子下载的用起来有安全风险的标记不良的图像。因此,我决定了关闭整个项目。

61292b7ebb1690d9f3a69621073d4da66de53dfd 

现在,利用为对象检测和人体检测提供的机器学习服务和开源实现,我可以推出自己的易用的检索图像服务。以前我需要付费服务做这个质量检查,如即便是不花费数千美元的API费用,也要花费数百美元。相反,我现在可以从一些数据科学”AWS框架中下载一个AMI,创建自己的API来检查不需要的图像内容。

概论

       在经历这些过程以前,我以为我在理论上已经理解了大部分图像识别和机器学习的原理。开始的时候我将我所需要使用到的机器学习内容进行关联之后,我对需要学习什么概念就一目了然了。例如,我并不仅仅知道线性代数对于机器学习很重要,现在我理解了如何将问题分解为多维数组/矩阵,并对其进行批量处理,以便找到可以在理论上表示的模式。在这之前,我知道在特征之间存在一些抽象的概念,以及如何将它们表示为可以在一系列评估项目中进行比较的数字。现在我更清楚地理解到,在很多直接和间接相互关联的因素下,机器学习的维度是如何表示的。矩阵数学的特征检测和评估的多维形式对我来说仍然是一个谜,但是我能够理解更高层次的概念。     

4dbfcb5599a0be4934c09faa1c88cf2016bcc74c 

以前难以辨认的网络架构现在看起来很清晰

阿德里安·罗斯布罗克(Adrian Rosebrock)的书让我对解码机器学习算法的简图顿悟了。深度学习网络架构的分解现在也可以理解一些了,我还熟悉了用于各种图像识别模型的基准数据集(MNISTCIFAR-10ImageNet)以及图像识别模型(VGG-16Inception等)之间的差异。

熟能生巧(动手去做才是王道)

回顾我一直以来阅读的资料,我发现大多数知识还是不能熟练掌握,为此我决定开展更多的行动来配合阅读相关博客。或许只有理论和实践相结合才能获得更快的成长速度。为此,我购买了一个GPU有了它我再也不需要因为训练模型和操作数据集等问题有任何的限制。

如果你想要在机器学习的相关技术上有所提高,你一定不要只看论文和博客,一定要尝试自己动手去做,这样你才有可能收获更多。     

 

本文由北邮@爱可可-爱生活 老师推荐,阿里云云栖社区组织翻译。

文章原标题《Two months exploring deep learning and computer vision

作者:Leonard Bogdonoff

译者:Mags,审校:袁虎。

文章为简译,更为详细的内容,请查看原文

相关文章
|
3月前
|
存储 前端开发 Java
【JAVA】Java 项目实战之 Java Web 在线商城项目开发实战指南
本文介绍基于Java Web的在线商城技术方案与实现,涵盖三层架构设计、MySQL数据库建模及核心功能开发。通过Spring MVC + MyBatis + Thymeleaf实现商品展示、购物车等模块,提供完整代码示例,助力掌握Java Web项目实战技能。(238字)
405 0
|
3月前
|
存储 JavaScript 安全
Web渗透-XSS漏洞深入及xss-labs靶场实战
XSS(跨站脚本攻击)是常见的Web安全漏洞,通过在网页中注入恶意脚本,窃取用户信息或执行非法操作。本文介绍其原理、分类(反射型、存储型、DOM型)、测试方法及xss-labs靶场实战案例,帮助理解与防御XSS攻击。
975 1
Web渗透-XSS漏洞深入及xss-labs靶场实战
|
3月前
|
安全 Linux PHP
Web渗透-命令执行漏洞-及常见靶场检测实战
命令执行漏洞(RCE)指应用程序调用系统命令时,用户可控制输入参数,导致恶意命令被拼接执行,从而危害系统安全。常见于PHP的system、exec等函数。攻击者可通过命令连接符在目标系统上执行任意命令,造成数据泄露或服务瘫痪。漏洞成因包括代码层过滤不严、第三方组件缺陷等。可通过参数过滤、最小权限运行等方式防御。本文还介绍了绕过方式、靶场测试及复现过程。
973 0
|
6月前
|
机器学习/深度学习 存储 运维
机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统
本研究通过实验演示了异常标记如何逐步完善异常检测方案和主要分类模型在欺诈检测中的应用。实验结果表明,Isolation Forest作为一个强大的异常检测模型,无需显式建模正常模式即可有效工作,在处理未见风险事件方面具有显著优势。
473 46
|
8月前
|
人工智能 自然语言处理 JavaScript
测试工程师要失业?Magnitude:开源AI Agent驱动的端到端测试框架,让Web测试更智能,自动完善测试用例!
Magnitude是一个基于视觉AI代理的开源端到端测试框架,通过自然语言构建测试用例,结合推理代理和视觉代理实现智能化的Web应用测试,支持本地运行和CI/CD集成。
993 15
测试工程师要失业?Magnitude:开源AI Agent驱动的端到端测试框架,让Web测试更智能,自动完善测试用例!
|
9月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
9月前
|
机器学习/深度学习 人工智能 Java
Java机器学习实战:基于DJL框架的手写数字识别全解析
在人工智能蓬勃发展的今天,Python凭借丰富的生态库(如TensorFlow、PyTorch)成为AI开发的首选语言。但Java作为企业级应用的基石,其在生产环境部署、性能优化和工程化方面的优势不容忽视。DJL(Deep Java Library)的出现完美填补了Java在深度学习领域的空白,它提供了一套统一的API,允许开发者无缝对接主流深度学习框架,将AI模型高效部署到Java生态中。本文将通过手写数字识别的完整流程,深入解析DJL框架的核心机制与应用实践。
555 3
|
10月前
|
前端开发
【2025优雅草开源计划进行中01】-针对web前端开发初学者使用-优雅草科技官网-纯静态页面html+css+JavaScript可直接下载使用-开源-首页为优雅草吴银满工程师原创-优雅草卓伊凡发布
【2025优雅草开源计划进行中01】-针对web前端开发初学者使用-优雅草科技官网-纯静态页面html+css+JavaScript可直接下载使用-开源-首页为优雅草吴银满工程师原创-优雅草卓伊凡发布
295 1
【2025优雅草开源计划进行中01】-针对web前端开发初学者使用-优雅草科技官网-纯静态页面html+css+JavaScript可直接下载使用-开源-首页为优雅草吴银满工程师原创-优雅草卓伊凡发布
|
9月前
|
机器学习/深度学习 数据可视化 算法
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
|
9月前
|
机器学习/深度学习 开发框架 API
Python 高级编程与实战:深入理解 Web 开发与 API 设计
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧以及数据科学和机器学习。本文将深入探讨 Python 在 Web 开发和 API 设计中的应用,并通过实战项目帮助你掌握这些技术。

热门文章

最新文章