[算法]-Longest Increasing Subsequence

简介:

看微软笔试题遇到的。

Longest Increasing Subsequence(LIS) means a sequence containing some elements in another sequence by the same order, and the values of elements keeps increasing.For example, LIS of {2,1,4,2,3,7,4,6} is {1,2,3,4,6}, and its LIS length is 5.Considering an array with N elements , what is the lowest time and space complexity to get the length of LIS?

算法一:动态规划

#include <iostream>
#include <vector>
using namespace std;
#define SIZE 8 
int s[SIZE]= {2,1,4,2,3,7,4,6};       // sequence
int length[SIZE];  // 第 x 格的值為 s[0...x] 的 LIS 長度

void LIS()
{
    // 初始化。每一個數字本身就是長度為一的 LIS。
    for (int i=0; i<SIZE; i++) length[i] = 1;

    for (int i=0; i<SIZE; i++)
        // 找出 s[i] 後面能接上哪些數字,
        // 若是可以接,長度就增加。
        for (int j=i+1; j<SIZE; j++)
            if (s[i] < s[j])
                length[j] = max(length[j], length[i] + 1);

    // length[] 之中最大的值即為 LIS 的長度。
    int n = 0;
    for (int i=0; i<SIZE; i++)
        n = max(n, length[i]);
    cout << "LIS的長度是" << n;
}

int main(void)  
{  
    LIS();
    system("pause");  
    return 0;  
}
算法二:
#include <iostream>
#include <vector>
using namespace std;
#define SIZE 8 
int s[SIZE]= {2,1,4,2,3,7,4,6};       // sequence
int b[SIZE];

// num为要查找的数,k是范围上限
// 二分查找大于num的最小值,并返回其位置
int bSearch(int num, int k)  
{  
    int low=1, high=k;  
    while(low<=high)  
    {  
        int mid=(low+high)/2;  
        if(num>=b[mid])  
            low=mid+1;  
        else   
            high=mid-1;  
    }  
    return low;  
}; 

void LIS()
{
    int low = 1, high = SIZE;
    int k = 1;
    b[1] = s[1];
    for(int i=2; i<=SIZE; ++i)
    {
        if(s[i]>=b[k])
            b[++k] = s[i];
        else
        {
            int pos = bSearch(s[i], k);
            b[pos] = s[i];
        }
    }
    printf("%d", k); 
}

int main(void)  
{  
    LIS();
    system("pause");  
    return 0;  
}




目录
相关文章
|
3月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
88 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
算法 Java 程序员
【手绘算法】力扣 3 无重复的最长字符串(Longest Substring Without Repeating Characters)
Hi,大家好,我是Tom。一个美术生转到Java开发的程序员。今天给大家分享的是力扣题第3题,无重复的最长字符串。在解题过程中,也会手写一些伪代码。当然,如果想要完整的源码的话,可以到我的个人主页简介中获取。 这道题呢属于中等难度,评估为四颗星,它的通过率只有39%。
96 0
|
算法 C#
算法题丨Longest Consecutive Sequence
描述 Given an unsorted array of integers, find the length of the longest consecutive elements sequence.
1126 0
|
5天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
5天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
14天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
27天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
166 80
|
15天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
15天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
13天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。

热门文章

最新文章