工具推荐 | 分析大数据最需要的Top 10数据挖掘工具

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 本文讲的是工具推荐 | 分析大数据最需要的Top 10数据挖掘工具,首先,我们要了解什么是数据挖掘?官方提供的定义如下:数据挖掘又称为资料探勘、数据采矿。
本文讲的是 工具推荐 | 分析大数据最需要的Top 10数据挖掘工具首先,我们要了解什么是数据挖掘?官方提供的定义如下:数据挖掘又称为资料探勘、数据采矿。它是数据库知识发现(Knowledge-Discovery in Databases,简称:KDD)中的一个步骤,一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。随着数据量的爆炸式增长,我们需要借助一些有效的工具进行数据挖掘工作,从而帮助我们更轻松地从巨大的数据集中找出关系、集群、模式、分类信息等。借助这类工具可以帮助我们做出最准确的决策,为我们的业务获取更多收益。

下面小编就为大家总结了10款最佳的数据挖掘工具,可以帮助大家从各种角度分析大数据,并通过数据做出正确的业务决策:

TOP10 数据挖掘工具 

1. RapidMiner RapidMiner是最受欢迎的免费数据挖掘工具之一,它是一个开源的数据挖掘软件,由Java语言编写而成,提供一些可扩展的数据分析挖掘算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。该款工具最大的好处就是,用户无需写任何代码。它是作为一个服务提供,而不是一款本地软件。

除了数据挖掘,RapidMiner还提供如数据预处理和可视化、预测分析和统计建模、评估和部署等功能。

RapidMiner还有一些很有用的扩展包,可以用来搭建推荐系统和评论挖掘系统,一个扩展包是推荐系统扩展包rmx_irbrecommender-ANY-5.0.4.jar,可以直接实现基于内容的和基于协同过滤的推荐系统。另一个扩展包是信息抽取扩展包rapidminer-Information-Extraction-1.0.2.jar,可以用于实现特征和观点词的提取,若再配合RapidMiner提供的文本分类功能,应该可以实现一个评论挖掘原型系统。

下载地址https://rapidminer.com/

2. SAS Data Mining(SAS 数据挖掘软件)

SAS最开始发源于北卡罗来纳州立大学,1976年SAS的成套软件从学校分离出来进入公司。用户可以使用SAS数据挖掘商业软件发掘数据集的模式,其描述性和预测性模型为用户更深入的理解数据提供了基础。

用户不需要写任何代码,它们提供易于使用的GUI,并提供从数据处理、集群到最终环节的自动化工具,用户可以从中得出最佳结果做出正确决策。由于它属于商业数据挖掘软件,所以其中包含很多高端的工具,包括自动化、密集像算法、建模、数据可视化等等。

下载地址https://www.sas.com/

3. WEKA

WEKA是一款非常复杂的数据挖掘工具,其原生的非Java版本主要是为了分析农业领域数据而开发的。该工具基于Java版本,支持多种标准数据挖掘任务,包括数据预处理、收集、分类、回归分析、可视化和特征选取。 与Rapid Miner相比优势在于,它在GNU通用公共许可证下是免费的,因为用户可以按照自己的喜好选择自定义。

高级用户可以通过Java编程和命令行来调用其分析组件。同时,Weka也为普通用户提供了图形化界面,称 为Weka KnowledgeFlow Environment和Weka Explorer。此外,用户还可以在Weka论坛可以找到很多扩展包,比如文本挖掘、可视化、网格计算等等。很多其它开源数据挖掘软件也支持调用Weka的分析功能。

下载地址http://www.cs.waikato.ac.nz/ml/weka/

4. Software – R

R软件是另一种较为流行的GNU开源数据挖掘工具,它主要是由C语言和FORTRAN语言编写的,是一款针对编程语言和软件环境进行统计计算和制图的免费软件。 除了可以为科学家、研究人员以及学生提供数据挖掘和分析功能外,它还可以提供统计和制图技术,包括线性和非线性建模,经典的统计测试,时间序列分析、分类、收集等等。

下载地址http://www.rdatamining.com/package

5. Orange数据挖掘软件

Orange是一个开源数据挖掘和机器学习工具,它的图形环境称为Orange画布(OrangeCanvas),用户可以在画布上放置分析控件 (widget),然后把控件连接起来即可组成挖掘流程。除了界面友好易于使用的优点,Orange的强项在于提供了大量可视化方法,可以对数据和模型进行多种图形化展示,并能智能搜索合适的可视化形式,支持对数据的交互式探索。

此外,它包含了完整的一系列的组件以进行数据预处理,并提供了数据帐目,过渡,建模,模式评估和勘探的功能。
Orange的弱项在于传统统计分析能力不强,不支持统计检验,报表能力也有限。Orange的底层核心也是采用C++编写,同时允许用户使用Python脚本语言来进行扩展开发。

下载地址:orange.biolab.si

6. KNIME 

KNIME(Konstanz Information Miner)是基于Eclipse,用Java编写的一款开源的数据分析、报告和综合平台,拥有数据提取、集成,处理,分析、转换以及加载所需的所有数据挖掘工具。此外,它具有图形用户界面,可以帮助用户轻松连接节点进行数据处理。

它结合了数据挖掘和机器学习的各种组件,对商业情报和财务数据分析非常有帮助。此外,用户还可以通过随时添加附加功能轻松地扩展KNIME。

下载地址https://www.knime.org/

7. NLTK

NLTK(Natural Language Tool Kit)最适用于语言处理任务,因为它可以提供一个语言处理工具,包括数据挖掘、机器学习、数据抓取、情感分析等各种语言处理任务。而您需要做的只是安装NLTK,然后将一个包拖拽到您最喜爱的任务中,您就可以去做其他事了。因为它是用Python语言编写的,你可以在上面建立应用,还可以自定义它的小任务。

下载地址http://www.nltk.org/

8. JHepWork

为科学家,工程师和学生所设计的jHepWork是一个免费的开源数据分析框架,其主要是用开源库来创建一个数据分析环境,并提供了丰富的用户接口,以此来和那些收费的的软件竞争。它主要是为了科学计算用的二维和三维的制图,并包含了用Java实现的数学科学库,随机数,和其它的数据挖掘算法。jHepWork是基于一个高级的编程语言Jython,当然,Java代码同样可以用来调用jHepWork的数学和图形库。

下载地址https://sourceforge.net/projects/jhepwork/

9. Pentaho

Pentaho为数据集成、业务分析以及大数据处理提供一个全面的平台。使用这种商业工具,你可以轻松地混合各种来源的数据,通过对业务数据进行分析可以为未来的决策提供正确的信息引导。

下载地址http://www.pentaho.com/

10. Tanagra

Tanagra是为学术和研究目的开发的数据挖掘软件,且是完全免费的。它使用图形界面的数据挖掘软件,采用了类似Windows资源管理器中的树状结构来组织分析组件。Tanagra缺乏高级的可视化能力,但它的强项是统计 分析,提供了众多的有参和无参检验方法。同时它的特征选取方法也很多。

下载地址:eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html

以上介绍的几款软件都是优秀的开源数据挖掘软件,各有所长,同时也各有缺点。读者可以结合自己的需求来进行选择,或者组合使用多个软件。对于普通用户可以选用界面友好易于使用的软件,对于希望从事算法开发的用户则可以根据软件开发工具不同来选择相应的软件。
原文发布时间为:2017年4月10日
本文作者:小二郎
本文来自云栖社区合作伙伴嘶吼,了解相关信息可以关注嘶吼网站。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
25天前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
84 2
|
2月前
|
存储 分布式计算 数据可视化
大数据常用技术与工具
【10月更文挑战第16天】
142 4
|
2月前
|
SQL 消息中间件 分布式计算
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
72 5
|
14天前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
29 4
|
16天前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
101 5
|
28天前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
105 14
|
1月前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
84 2
|
1月前
|
数据采集 机器学习/深度学习 搜索推荐
大数据与社交媒体:用户行为分析
【10月更文挑战第31天】在数字化时代,社交媒体成为人们生活的重要部分,大数据技术的发展使其用户行为分析成为企业理解用户需求、优化产品设计和提升用户体验的关键手段。本文探讨了大数据在社交媒体用户行为分析中的应用,包括用户画像构建、情感分析、行为路径分析和社交网络分析,以及面临的挑战与机遇。
|
1月前
|
机器学习/深度学习 搜索推荐 大数据
大数据与教育:学生表现分析的工具
【10月更文挑战第31天】在数字化时代,大数据成为改善教育质量的重要工具。本文探讨了大数据在学生表现分析中的应用,介绍学习管理系统、智能评估系统、情感分析技术和学习路径优化等工具,帮助教育者更好地理解学生需求,制定个性化教学策略,提升教学效果。尽管面临数据隐私等挑战,大数据仍为教育创新带来巨大机遇。
|
1月前
|
人工智能 供应链 搜索推荐
大数据分析:解锁商业智能的秘密武器
【10月更文挑战第31天】在信息爆炸时代,大数据分析成为企业解锁商业智能的关键工具。本文探讨了大数据分析在客户洞察、风险管理、供应链优化、产品开发和决策支持等方面的应用,强调了明确分析目标、选择合适工具、培养专业人才和持续优化的重要性,并展望了未来的发展趋势。