继“阿尔法狗”之后 人工智能系统又击败四名德州扑克职业选手

简介:

卡内基梅隆大学(CMU)的人工智能系统在匹兹堡20天的单挑扑克锦标赛上击败四名职业老手。该人工智能(AI)系统名为Libratus AI。Libratus AI具有策略推理功能,其计算能力可处理10的160次方的可能信息集合,该数目是单挑不限注德州扑克游戏具有的信息集合数。

继“阿尔法狗”之后 人工智能系统又击败四名德州扑克职业选手

Libratus由计算机科学教授Tuomas Sandholm和计算机科学博士生Noam Brown开发。Libratus在匹兹堡超级计算中心的桥牌计算机里运行。

据Sandholm和Brown称, Libratus的取胜并不是靠运气。Sandholm 表示,“ 顶级AI在不完整信息的情况下进行策略推理的能力已经超过了人类里的佼佼者。”

要击败Dong Kim、Jimmy Chou、Daniel McAulay和Jason Les四个专业牌手,Libratus必须在不知道其他牌的情况下作出决定,同时还要确定对手何时是在使诈。

卡内基梅隆大学表示,Libratus用了匹兹堡超级计算中心桥牌计算机846个计算节点的约600个计算节点的功力。该桥牌计算机的速度是每秒1.35 Petaflop,大约是高端笔记本电脑的7250倍,其内存为274 TB。

Sandholm表示,“每天赛事后,Libratus会用一种元算法分析其他专业牌手在Libratus策略里找到和利用过的漏洞。”

另外,Sandholm表示,“Libratus每天晚上然后会对漏洞按优先程度分级并利用超级计算机修补前三个漏洞,这种做法和以前在扑克游戏里用到的学习方法非常不一样。”

Sandholm称,“在研究人员开发的算法里,典型的做法通常是试图利用对手的弱点。与之相比,Libratus则是每天在算法上修补我们策略里的漏洞。”

据CMU计算机科学院计算机系主任Frank Pfenning介绍,Libratus可用于各种存在不完整信息的领域及对手有意散步非真实信息的领域,诸如商务谈判、军事策略、网络安全和医疗规划等领域都可以受益于自动决策。

Pfenning表示,“电脑若不会用虚张声势的策略就赢不了扑克游戏。开发一个会玩扑克游戏的人工智能系统在科学上是一个巨大的进步,可以在许多领域用得上。想象一下,有朝一日手里智能手机可以在买新车时砍价。当然还有许多别的用法。

“看看这场比赛,玩扑克的程序最终超越了人类最好的玩家,令人振奋。这些成就里的每一个都是我们对智能的理解的重要里程碑。”Pfenning表示。

而CMU在以前Watson和深蓝的开发过程中出过力。Watson是IBM的人工智能系统,曾在电视问答节目Jeopardy!里击败过人类对手。IBM的深蓝曾于1997年击败过国际象棋大师Garry Kasparov。

据悉,人工智能开发是卡耐基梅隆大学优先发展的重要项目。卡耐基梅隆大学称,去年11月获全球高盖茨律师事务所(K&L Gates LLP)1000万美元的捐助,用于建立一个主要研究人工智能伦理的新研究中心。

其时,卡耐基梅隆大学校长Subra Suresh表示,影响下一个世纪的不仅仅是技术。Suresh表示,“人类如何与科技互动、我们如何预测未来及如何应对由我们所做的导致的意想不到的后果、以及如何确保科技用于造福人类(在个人和社会的层面上),所有这些的都将对我们的未来产生重大影响。”

Suresh还表示,卡内基梅隆大学在人工智能、脑科学、网络安全、机器人技术方面在过去和现在都处于领导地位,可以说卡内基梅隆大学拥有探究上述各种话题的“独特地位”。

另据悉,上个月初,名为DeepStack人工智能系统的研究人员称,DeepStack算法是首个击败单挑不限注德州扑克游戏专业玩家的程序。

去年3月,谷歌子公司DeepMind旗下的AI AlphaGo在五场制人机围棋大战里击败九段棋士李世乭。





原文发布时间为: 2017年2月2日 
本文作者:作者:李超
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
目录
相关文章
|
21天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
221 55
|
4月前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
125 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
160 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2月前
|
人工智能 监控 物联网
深度探索人工智能与物联网的融合:构建未来智能生态系统###
在当今这个数据驱动的时代,人工智能(AI)与物联网(IoT)的深度融合正引领着一场前所未有的技术革命。本文旨在深入剖析这一融合背后的技术原理、探讨其在不同领域的应用实例及面临的挑战与机遇,为读者描绘一幅关于未来智能生态系统的宏伟蓝图。通过技术创新的视角,我们不仅揭示了AI与IoT结合的强大潜力,也展望了它们如何共同塑造一个更加高效、可持续且互联的世界。 ###
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
94 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
2月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
105 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
4月前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
154 22
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
4月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
131 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
4月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
158 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
4月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
126 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台