果断收藏!六大主流大数据采集平台架构分析

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
简介:

果断收藏!六大主流大数据采集平台架构分析

随着大数据越来越被重视,数据采集的挑战变的尤为突出。今天为大家介绍几款数据采集平台:

Apache Flume Fluentd Logstash Chukwa Scribe Splunk Forwarder

大数据平台与数据采集

任何完整的大数据平台,一般包括以下的几个过程:

数据采集–>数据存储–>数据处理–>数据展现(可视化,报表和监控)

其中,数据采集是所有数据系统必不可少的,随着大数据越来越被重视,数据采集的挑战也变的尤为突出。这其中包括:

  • 数据源多种多样
  • 数据量大
  • 变化快
  • 如何保证数据采集的可靠性的性能
  • 如何避免重复数据
  • 如何保证数据的质量

我们今天就来看看当前可用的六款数据采集的产品,重点关注它们是如何做到高可靠,高性能和高扩展。

1、Apache Flume

官网:https://flume.apache.org/

Flume 是Apache旗下的一款开源、高可靠、高扩展、容易管理、支持客户扩展的数据采集系统。 Flume使用JRuby来构建,所以依赖Java运行环境。

Flume最初是由Cloudera的工程师设计用于合并日志数据的系统,后来逐渐发展用于处理流数据事件。

Flume设计成一个分布式的管道架构,可以看作在数据源和目的地之间有一个Agent的网络,支持数据路由。

每一个agent都由Source,Channel和Sink组成。

Source

Source负责接收输入数据,并将数据写入管道。Flume的Source支持HTTP,JMS,RPC,NetCat,Exec,Spooling Directory。其中Spooling支持监视一个目录或者文件,解析其中新生成的事件。

Channel

Channel 存储,缓存从source到Sink的中间数据。可使用不同的配置来做Channel,例如内存,文件,JDBC等。使用内存性能高但不持久,有可能丢数据。使用文件更可靠,但性能不如内存。

Sink

Sink负责从管道中读出数据并发给下一个Agent或者最终的目的地。Sink支持的不同目的地种类包括:HDFS,HBASE,Solr,ElasticSearch,File,Logger或者其它的Flume Agent。

Flume在source和sink端都使用了transaction机制保证在数据传输中没有数据丢失。

Source上的数据可以复制到不同的通道上。每一个Channel也可以连接不同数量的Sink。这样连接不同配置的Agent就可以组成一个复杂的数据收集网络。通过对agent的配置,可以组成一个路由复杂的数据传输网络。

配置如上图所示的agent结构,Flume支持设置sink的Failover和Load Balance,这样就可以保证即使有一个agent失效的情况下,整个系统仍能正常收集数据。

Flume中传输的内容定义为事件(Event),事件由Headers(包含元数据,Meta Data)和Payload组成。

Flume提供SDK,可以支持用户定制开发:

Flume客户端负责在事件产生的源头把事件发送给Flume的Agent。客户端通常和产生数据源的应用在同一个进程空间。常见的Flume 客户端有Avro,log4J,syslog和HTTP Post。另外ExecSource支持指定一个本地进程的输出作为Flume的输入。当然很有可能,以上的这些客户端都不能满足需求,用户可以定制的客户端,和已有的FLume的Source进行通信,或者定制实现一种新的Source类型。

同时,用户可以使用Flume的SDK定制Source和Sink。似乎不支持定制的Channel。

2、Fluentd

官网:http://docs.fluentd.org/articles/quickstart

Fluentd是另一个开源的数据收集框架。Fluentd使用C/Ruby开发,使用JSON文件来统一日志数据。它的可插拔架构,支持各种不同种类和格式的数据源和数据输出。最后它也同时提供了高可靠和很好的扩展性。Treasure Data, Inc 对该产品提供支持和维护。

Fluentd的部署和Flume非常相似:

Fluentd的架构设计和Flume如出一辙:

Fluentd的Input/Buffer/Output非常类似于Flume的Source/Channel/Sink。

Input

Input负责接收数据或者主动抓取数据。支持syslog,http,file tail等。

Buffer

Buffer负责数据获取的性能和可靠性,也有文件或内存等不同类型的Buffer可以配置。

Output

Output负责输出数据到目的地例如文件,AWS S3或者其它的Fluentd。

Fluentd的配置非常方便,如下图:

Fluentd的技术栈如下图:

FLuentd和其插件都是由Ruby开发,MessgaePack提供了JSON的序列化和异步的并行通信RPC机制。

Cool.io是基于libev的事件驱动框架。

FLuentd的扩展性非常好,客户可以自己定制(Ruby)Input/Buffer/Output。

Fluentd从各方面看都很像Flume,区别是使用Ruby开发,Footprint会小一些,但是也带来了跨平台的问题,并不能支持Windows平台。另外采用JSON统一数据/日志格式是它的另一个特点。相对去Flumed,配置也相对简单一些。

3、Logstash

https://github.com/elastic/logstash

Logstash是著名的开源数据栈ELK (ElasticSearch, Logstash, Kibana)中的那个L。

Logstash用JRuby开发,所有运行时依赖JVM。

Logstash的部署架构如下图,当然这只是一种部署的选项。

一个典型的Logstash的配置如下,包括了Input,filter的Output的设置。

几乎在大部分的情况下ELK作为一个栈是被同时使用的。所有当你的数据系统使用ElasticSearch的情况下,logstash是首选。

4、Chukwa

官网:https://chukwa.apache.org/

Apache Chukwa是apache旗下另一个开源的数据收集平台,它远没有其他几个有名。Chukwa基于Hadoop的HDFS和Map Reduce来构建(显而易见,它用Java来实现),提供扩展性和可靠性。Chukwa同时提供对数据的展示,分析和监视。很奇怪的是它的上一次 github的更新事7年前。可见该项目应该已经不活跃了。

Chukwa的部署架构如下:

Chukwa的主要单元有:Agent,Collector,DataSink,ArchiveBuilder,Demux等等,看上去相当复杂。由于该项目已经不活跃,我们就不细看了。

5、Scribe

代码托管:https://github.com/facebookarchive/scribe

Scribe是Facebook开发的数据(日志)收集系统。已经多年不维护,同样的,就不多说了。

6、Splunk Forwarder

官网:http://www.splunk.com/

以上的所有系统都是开源的。在商业化的大数据平台产品中,Splunk提供完整的数据采金,数据存储,数据分析和处理,以及数据展现的能力。

Splunk是一个分布式的机器数据平台,主要有三个角色:

Search Head负责数据的搜索和处理,提供搜索时的信息抽取。 Indexer负责数据的存储和索引 Forwarder,负责数据的收集,清洗,变形,并发送给Indexer

Splunk内置了对Syslog,TCP/UDP,Spooling的支持,同时,用户可以通过开发 Input和Modular Input的方式来获取特定的数据。在Splunk提供的软件仓库里有很多成熟的数据采集应用,例如AWS,数据库(DBConnect)等等,可以方便的从云或者是数据库中获取数据进入Splunk的数据平台做分析。

这里要注意的是,Search Head和Indexer都支持Cluster的配置,也就是高可用,高扩展的,但是Splunk现在还没有针对Farwarder的Cluster的功能。也就是说如果有一台Farwarder的机器出了故障,数据收集也会随之中断,并不能把正在运行的数据采集任务Failover到其它的 Farwarder上。

总结

我们简单讨论了几种流行的数据收集平台,它们大都提供高可靠和高扩展的数据收集。大多平台都抽象出了输入,输出和中间的缓冲的架构。利用分布式的网络连接,大多数平台都能实现一定程度的扩展性和高可靠性。

其中Flume,Fluentd是两个被使用较多的产品。如果你用ElasticSearch,Logstash也许是首选,因为ELK栈提供了很好的集成。Chukwa和Scribe由于项目的不活跃,不推荐使用。

Splunk作为一个优秀的商业产品,它的数据采集还存在一定的限制,相信Splunk很快会开发出更好的数据收集的解决方案。


本文作者:HollyMike

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
8月前
|
存储 监控 安全
智慧工地管理平台的技术架构和工作原理
智慧工地管理平台是将互联网+的理念和技术引入建筑工地,从施工现场源头抓起,最大程度的收集人员、安全、环境、材料等关键业务数据,依托物联网、互联网,建立云端大数据管理平台,形成“端+云+大数据”的业务体系和新的管理模式,打通从一线操作与远程监管的数据链条,实现劳务、安全、环境、材料各业务环节的智能化、互联网化管理,提升建筑工地的精益生产管理水平。实现“互联网+”与建筑工地的跨界融合,促进行业转型升级。
364 1
|
8月前
|
存储 数据可视化 数据管理
基于阿里云服务的数据平台架构实践
本文主要介绍基于阿里云大数据组件服务,对企业进行大数据平台建设的架构实践。
1420 2
|
8月前
|
存储 监控 前端开发
【Java应用服务体系】「序章入门」全方位盘点和总结调优技术专题指南
【Java应用服务体系】「序章入门」全方位盘点和总结调优技术专题指南
96 0
|
Go 区块链 数据安全/隐私保护
魔豹联盟2.0系统项目开发技术方案(技术原理成熟方案)
魔豹联盟2.0系统项目开发技术方案(技术原理成熟方案)
245 1
|
移动开发 缓存 运维
技术实践第四期|解读移动开发者日常-性能监控平台应用
应用性能监控平台是用来帮助客户提升应用性能质量和稳定性的重要环节,本人作为一名移动端开发者有着丰富的使用和运维经验,希望通过本文分享过往的心得和使用经验,让我参与开发的U-APM这款产品中,作为借鉴可以在中长期规划中帮助更多的开发者。
技术实践第四期|解读移动开发者日常-性能监控平台应用
|
存储 SQL 分布式计算
沉淀了3年的自研前端错误监控系统,打通你的脉络
沉淀了3年的自研前端错误监控系统,打通你的脉络
沉淀了3年的自研前端错误监控系统,打通你的脉络
|
存储 人工智能 运维
流利说统一可观察性平台实践
流利说利用日志服务SLS构建统一可观察性平台最佳实践
968 0
流利说统一可观察性平台实践
|
机器学习/深度学习 人工智能 运维
手淘再推新利器Holmes:一站式智能化异常检测平台
指标监控关乎稳定性,但随着数据量的增加、指标的复杂周期性和模式变化的动态性,基于阈值/同比环比的规则难以适用,而且复杂的领域知识导致为每条指标配置相应的规则费时费力,无法应用在大规模数据监控上。在监控的有效性方面,传统的规则报警无法智能识别季节性,也经常受到噪声/抖动数据的干扰而导致误报,固定的规则以及阈值更无法进行提前预警。
1640 0
|
API 调度 运维
一篇文章带你了解阿里云全域集成解决方案背后的黑科技
在云栖大会的全域集成发布会现场,一位工程师在100%真实的环境下,为所有来宾现场演示了“从零开始搭建一款集成应用”的过程。通过全域集成中台,仅仅用了5分钟时间就快速搭建好了一个企业中常见的“发票识别”集成应用,并且成功推送识别成功后的发票内容详情。
4505 0
一篇文章带你了解阿里云全域集成解决方案背后的黑科技
|
关系型数据库 大数据 分布式数据库