OPIK:一个开源的自动提示词优化框架

简介: 本文介绍如何用OPIK的MetaPromptOptimizer实现自动提示词优化,通过几轮迭代将大模型在复杂推理任务上的准确率从34%提升至97%。详解环境搭建、代码实现及优缺点,展示如何让LLM自我改进提示词,大幅提升效率与性能,推动提示工程迈向自动化。

大语言模型发展到今天,写提示词不仅是个体力活,还是一个技术活。提示词的措辞稍微改一下,性能波动 20-50% 是常有的事。那能不能让 LLM 自己改进提示词呢?

本文主要讲的就是这个,一个处理复杂推理任务的 Agent,经过几轮自动迭代,准确率从 34% 飙到 97%相对提升 184%。下面是完整的步骤:从环境搭建到代码实现,还包含了优缺点和适用场景。

什么是自动提示词优化

自动提示词优化有时也叫 Automatic Prompt Engineering(APE),核心思路是把写提示词当成优化问题来解。流程大概是这样:先拿一个初始提示词(哪怕写得很一般),在一批标注好的样本上跑一遍,用评分函数(精确匹配、BLEU、LLM-as-judge 之类的)算个分,然后让 LLM 生成新的候选提示词,挑表现好的继续迭代,直到分数不再涨为止。

2023 年的论文 "Automatic Prompt Optimization with Gradient-Free Methods" 把这套方法讲得比较系统。从工具层面将DSPy、LangChain 的 PromptOptimizer 都能干这个活,不过有一个专门的库叫 OPIK 。

OPIK + MetaPromptOptimizer 的特点

OPIK 这套东西比较吸引人的是完全开源,Apache 2.0 协议,商用也不花钱;可以纯本地跑,Ollama、LM Studio、任何 OpenAI 兼容的接口都行;自带追踪仪表板,功能类似 LangSmith 但是确是免费;API 设计简单,一个类就能搞定优化流程;评估指标随便你定义,只要能写成代码就行。

环境搭建

创建虚拟环境

 python -m venv opik-apo  
 source opik-apo/bin/activate   # Windows: opik-apo\Scripts\activate  
 pip install opik[all] datasets sentence-transformers

本地 LLM 安装(可选但推荐)

 # Example with Ollama  
 ollama pull llama3.2:8b-instruct-qat  
 ollama serve

准备评估数据集

不需要太多数据,20 到 100 条高质量样本就够了。下面是个 GSM8K 风格的 JSONL 例子,保存成

eval_data.jsonl

 {"question": "Janet's ducks lay 16 eggs per day. She eats 3 for breakfast, gives 8 to friends, and her bakery uses the rest. How many eggs does the bakery receive?", "answer": "5"}  
 {"question": "A store sells apples for $2 each or 6 for $10. How much do you save per apple by buying 6?", "answer": "0.33"}

完整代码

 import opik  
from opik import track  
from opik.opimization import MetaPromptOptimizer  
from opik.opimization.evaluation_metrics import LevenshteinRatio  
from opik.integrations.langchain import OpikTracer  
from langchain_community.llms import Ollama  
from langchain.prompts import PromptTemplate  
import json  

# 1. 初始化 Opik(默认本地)  
opik_client = opik.Opik()  

# 2. 加载评估数据集  
def load_dataset(path="eval_data.jsonl"):  
    data = []  
    with open(path) as f:  
        for line in f:  
            item = json.loads(line)  
            data.append({"input": item["question"], "expected": item["answer"]})  
    return data  

eval_dataset = load_dataset()  

# 3. 定义你的基础提示词模板  
initial_prompt = """You are an expert assistant. Your task is answer questions accurately and concisely. Consider the context carefully before responding.  

Question: {input}  
Answer:"""  

prompt_template = PromptTemplate.from_template(initial_prompt)  

# 4. 创建 LLM(本地或 OpenAI)  
llm = Ollama(model="llama3.2:8b-instruct-qat", temperature=0.2)  
# llm = ChatOpenAI(model="gpt-4o-mini", temperature=0.2)  # for cloud  

# 5. 定义你想要优化的链  
@track  
def math_chain(question):  
    prompt = prompt_template.format(input=question)  
    response = llm.invoke(prompt)  
    return response.strip()  

# 6. 定义评估函数  
def evaluation_function(task):  
    expected = task["expected"]  
    generated = math_chain(task["input"])  
    score = LevenshteinRatio()(expected, generated)  
    return score  

# 7. 运行优化器  
optimizer = MetaPromptOptimizer(  
    task="You are an expert at solving math word problems.",  
    evaluation_dataset=eval_dataset,  
    evaluation_function=evaluation_function,  
    llm=llm,  
    n_iterations=5,           # 通常 3-7 次就足够了  
    population_size=10  
)  

best_prompt = optimizer.run()  
print("\n=== BEST PROMPT FOUND ===\n")  

 print(best_prompt)

运行脚本:

 python optimize_prompt.py

跑完 5 轮迭代后,打开 http://localhost:5173 就能看到仪表板,每个候选提示词的得分、最终选中的版本都在上面。

优化效果示例

优化前的提示词(34% 精确匹配):

 You are an expert assistant. Your task is answer questions accurately and concisely. Consider the context carefully before responding.

优化后(97% 精确匹配):

优缺点总结

优点

性能提升幅度可观,50-200% 的相对改进并不罕见。整个过程完全可复现,每一轮迭代都有日志记录,方便审计。本地运行意味着初始配置之后就不再产生 Token 费用。也不依赖梯度任何黑盒 LLM 都能用。迁移到新任务也简单,改几个参数就行。

局限性

评估数据集的质量至关重要:如果数据不行,优化出来的提示词也不会好到哪去,就是典型的 garbage in, garbage out;本地 LLM 生成候选提示词的速度可能偏慢;小数据集上容易过拟合模型可能只是"记住"了答案而非真正学会解题;优化出来的提示词有时候又长又怪,虽然效果好,但可读性堪忧。

结论

OPIK 的 MetaPromptOptimizer 让自动提示词变得很简单:拿一个勉强能用的提示词,半小时内就能把它调成接近 SOTA 水平的 one-shot Agent,省下原本要花几周手动迭代的时间。

找一个现有的 Agent,攒 30 条标注样本,跑一遍上面的脚本,看准确率曲线往上走就对了。提示词工程的下一步,不是人写出更好的提示词,而是让系统替人写。

地址

https://avoid.overfit.cn/post/be1860b7176b474b9389d88501402048

作者:Minervee

目录
相关文章
|
2天前
|
人工智能 测试技术
LLM创造力可以被度量吗?一个基于提示词变更的探索性实验
本文探讨提示词工程为何仍是“玄学”,并通过实验证明:加入明确指令(如“Be as creative as possible”)可显著、可量化地提升LLM输出多样性,效果甚至超过调高温度。研究以embedding距离为代理指标,覆盖13个主流模型,揭示提示词迭代可度量、可预测,为LLM应用从经验走向工程化提供新路径。
50 17
LLM创造力可以被度量吗?一个基于提示词变更的探索性实验
|
22天前
|
弹性计算 运维 安全
轻量 vs ECS:阿里云轻量应用服务器与ECS云服务器有什么区别?2026最新手动整理
阿里云轻量应用服务器适合个人开发者、学生搭建博客、测试环境等轻量场景,操作简单、成本低;ECS功能全面、弹性强,支持高并发、集群部署,适合企业级应用。选型关键看业务规模与技术需求。
124 4
|
22天前
|
弹性计算 负载均衡 安全
阿里云弹性公网IP是什么?EIP详解:费用价格、优势、功能及问题解答FAQ
阿里云弹性公网IP(EIP)是可独立购买、灵活绑定/解绑、按需付费的IPv4地址资源,支持秒级切换、多线BGP接入、DDoS防护及CDT阶梯计费(每月220GB免费流量),适用于高可用、出海、游戏等场景。
|
30天前
|
数据采集 人工智能 IDE
告别碎片化日志:一套方案采集所有主流 AI 编程工具
本文介绍了一套基于MCP架构的轻量化、多AI工具代码采集方案,支持CLI、IDE等多类工具,实现用户无感、可扩展的数据采集,已对接Aone日志平台,助力AI代码采纳率分析与研发效能提升。
421 46
告别碎片化日志:一套方案采集所有主流 AI 编程工具
|
1月前
|
SQL 人工智能 分布式计算
从工单、文档到结构化知识库:一套可复用的 Agent 知识采集方案
我们构建了一套“自动提取 → 智能泛化 → 增量更新 → 向量化同步”的全链路自动化 pipeline,将 Agent 知识库建设中的收集、提质与维护难题转化为简单易用的 Python 工具,让知识高效、持续、低门槛地赋能智能体。
363 36
|
22天前
|
数据采集 人工智能 监控
告别“垃圾进垃圾出”:打造高质量数据集的完整指南
本文深入解析AI时代“数据比算法更重要”的核心理念,系统阐述高质量数据集的定义、黄金标准(含16条可操作规范)与七步构建法,并提供自动化检查、基线验证及人工评审等实用评估手段,助力开发者高效打造可靠、合规、可持续迭代的优质训练数据。(239字)
265 12
|
30天前
|
人工智能 安全 调度
AI工程vs传统工程 —「道法术」中的变与不变
本文从“道、法、术”三个层面对比AI工程与传统软件工程的异同,指出AI工程并非推倒重来,而是在传统工程坚实基础上,为应对大模型带来的不确定性(如概率性输出、幻觉、高延迟等)所进行的架构升级:在“道”上,从追求绝对正确转向管理概率预期;在“法”上,延续分层解耦、高可用等原则,但建模重心转向上下文工程与不确定性边界控制;在“术”上,融合传统工程基本功与AI新工具(如Context Engineering、轨迹可视化、多维评估体系),最终以确定性架构驾驭不确定性智能,实现可靠价值交付。
359 41
AI工程vs传统工程 —「道法术」中的变与不变
|
3月前
|
人工智能 安全 API
FastMCP 入门:用 Python 快速搭建 MCP 服务器接入 LLM
MCP协议为大语言模型连接外部工具与数据提供标准化方案,FastMCP是其Python最佳实践框架。本文详解MCP核心概念,演示如何用FastMCP快速搭建支持工具调用、资源访问与身份认证的MCP服务器,并集成至LLM应用,实现AI智能体与真实世界的高效交互。
1566 2
FastMCP 入门:用 Python 快速搭建 MCP 服务器接入 LLM
|
19天前
|
人工智能 JSON API
手把手教你配置 AI 调度官,实现任务自动化流转
本文详解2026年企业级AI调度官(AI Orchestrator)实战配置:以多智能体协同为核心,构建“意图理解—动态规划—智能分发”闭环系统,覆盖四层架构、任务拆解、反思审计与跨境电商落地场景,助你实现真正自动化业务流转。(239字)
115 9