一场FullGC故障排查

简介: 本文记录了一次Java应用CPU使用率异常升高的排查过程。通过分析发现,问题根源为频繁Full GC导致CPU飙升,而Full GC是因用户上传的Excel数据被加载为大对象并长期驻留JVM内存所致。使用JProfiler分析堆内存,定位到List<Map<String, String>>结构造成内存膨胀,空间效率仅约13.4%。最终提出“治本”与“治标”两类解决方案:一是将大数据移出JVM内存,存入Redis;二是优化代码,及时清理无用字段以减小对象体积。文章总结了从监控识别、工具分析到根本解决的完整排查思路,对类似性能问题具有参考价值。(238字)

一、问题发现与排查

1.1 找到问题原因

问题起因是我们收到了jdos的容器CPU告警,CPU使用率已经达到104%

观察该机器日志发现,此时有很多线程在执行跑批任务。正常来说,跑批任务是低CPU高内存型,所以此时考虑是FullGC引起的大量CPU占用(之前有类似情况,告知用户后重启应用后解决问题)。

通过泰山查看该机器内存使用情况:

可以看到CPU确实使用率偏高,但是内存使用率并不高,只有62%,属于正常范围内。

到这里其实就有点迷惑了,按道理来说此时内存应该已经打满才对。

后面根据其他指标,例如流量的突然进入也怀疑过是jsf接口被突然大量调用导致的cpu占满,所以内存使用率不高,不过后面都慢慢排除了。其实在这里就有点一筹莫展了,现象与猜测不符,只有CPU增长而没有内存增长,那么什么原因会导致单方面CPU增长?然后又朝这个方向排查了半天也都被否定了。

后面突然意识到,会不会是监控有“问题”?

换句话说应该是我们看到的监控有问题,这里的监控是机器的监控,而不是JVM的监控!

JVM的使用的CPU是在机器上能体现出来的,而JVM的堆内存高额使用之后在机器上体现的并不是很明显。

遂去sgm查看对应节点的jvm相关情况:

可以看到我们的堆内存老年代确实有过被打满然后又清理后的情况,查看此时的CPU使用情况也可以与GC时间对应上。

那么此时可以确定,是Full GC引起的问题。

1.2 找到FULL GC的原因

我们首先dump出了gc前后的堆内存快照,

然后使用JPofiler进行内存分析。(JProfiler是一款堆内存分析工具,可以直接连接线上jvm实时查看相关信息,也可以分析dump出来的堆内存快照,对某一时刻的堆内存情况进行分析)

首先将我们dump出来的文件解压,修改后缀名.bin,然后打开即可。(我们使用行云上自带的dump小工具,也可以自己去机器上通过命令手工dump文件)

首先选择Biggest Objects,查看当时堆内存中最大的几个对象。

从图中可以看出,四个List对象就占据了近900MB的内存,而我们刚刚看到堆内存最大也只有1.3GB,因此再加上其他的对象,很容易就会把老年代占满引发full gc的问题。

选择其中一个最大的对象作为我们要查看的对象

这个时候我们已经可以定位到对应的大内存对象对应的位置:

其实至此我们已经能够大概定位出问题所在,如果还是不确定的话,可以查看具体的对象信息,方法如下:

可以看到我们的大List对象,其实内部是很多个Map对象,而每个Map对象中又有很多键值对。

在这里也可以看到Map中的相关属性信息。

也可以在以下界面直接看到相关信息:

然后一路点下去就可以看到对应的属性。

至此,我们理论上已经找到了大对象在代码中的位置。

二、问题解决

2.1 找到大对象在代码中的位置与问题的根本原因

首先我们根据上述过程找到对应位置与逻辑

我们的项目中大概逻辑是这样的:

  1. 首先会解析用户上传的Excel样本,并将其加载到内存中作为一个List变量,即我们上述看到的变量。一个20w的样本,此时字段数量有a个,大概占用空间100mb左右。
  2. 然后遍历循环用户样本,根据用户样本中的数据,再增加一些额外的请求数据,根据此数据请求相关结果。此时字段数量有a+n个,占用空间已经在200mb左右。
  3. 循环完成后将此200mb的数据存入缓存。
  4. 开始生成excel,将200mb数据从缓存中取出,并根据之前记录的a个字段,取出初始的样本字段填充至excel。

用流程图表示为:

结合一些具体排查问题的图片:

其中一个现象是每次gc后的最小内存正在逐步变大,对应上述步骤中第二步,内存正在逐步膨胀。

结论

将用户上传的excel样本加载到内存中,并将其作为一个List<Map<String, String>>的结构存储起来,首先一个20mb的excel文件以此方式存储会膨胀占用120mb左右堆内存,此步骤会大量占用堆内存,并且因为任务逻辑原因,该大对象内存会在jvm中存在长达4-12小时之久,导致一但任务过多,jvm堆内存很容易被打满。

这里列举了为什么使用HashMap会导致内存膨胀,其主要原因是存储空间效率比较低:

一个Long对象占内存计算:在HashMap<Long,Long>结构中,只有Key和Value所存放的两个长整型数据是有效数据,共16字节(2×8字节)。这两个长整型数据包装成java.lang.Long对象之后,就分别具有8字节的MarkWord、8字节的Klass指针,再加8字节存储数据的long值(一个包装对象占24字节)。

然后这2个Long对象组成Map.Entry之后,又多了16字节的对象头(8字节MarkWord+8字节Klass指针=16字节),然后一个8字节的next字段和4字节的int型的hash字段(8字节next指针+4字节hash字段+4字节填充=16字节),为了对齐,还必须添加4字节的空白填充,最后还有HashMap中对这个Entry的8字节的引用,这样增加两个长整型数字,实际耗费的内存为(Long(24byte)×2)+Entry(32byte)+HashMapRef(8byte)=88byte,空间效率为有效数据除以全部内存空间,即16字节/88字节=18%。

——《深入理解Java虚拟机》5.2.6

以下是刚上传的excel中dump出的堆内存对象,其占用的内存达到了128mb,而上传的excel实际只有17.11mb。

空间效率17.1mb/128mb≈13.4%

2.2 如何解决此问题

暂且不讨论上述流程是否合理,解决办法一般可以分为两类,一类是治本,即不把该对象放入jvm内存中,转而存入缓存中,不在内存中则大对象问题自然迎刃而解。另一类是治标,即缩小该大内存对象,在日常使用场景下使其一般不会触发频繁的full gc问题。

两种方式各有优劣:

2.2.1 激进治疗:不把他存入内存

解决逻辑也很简单,例如在加载数据时,将其按照样本加载数据一条一条存入redis缓存,然后我们只需要知道样本中有多少的数量,按照数量的先后顺序从缓存中取出数据,即可解决该问题。

优点:可以从根本上解决此问题,以后基本上不会存在该问题,数据量再大只需要添加相应的redis资源即可。

缺点:首先会增加许多redis缓存空间消耗,其次从显示考虑对于我们项目来说,此处代码古老且晦涩难懂,改动需要较大工作量与回归测试。

2.2.2 保守治疗:缩减其数据量

分析2.1的上述流程,首先第三步是完全没必要的,先存入缓存再取出,额外占用缓存空间。(猜测系历史问题,此处不再深究)。

其次是在第二步中,多出来的字段n,在请求结束后该字段就已经无用了,因此可以考虑在请求结束后删除无用字段。

此时也有两种解决方案,一种是只删除无用字段缩减其map大小,然后将其作为参数传递给生成excel使用;另一种方式是请求完成直接删除该map,然后在生成excel时再重新读取用户上传的excel样本。

优点:改动较小,不需要太复杂的回归测试

缺点:在极端大数据量情况下,仍有可能出现full gc的情况

具体实现方式就不展开了。

其中一种实现方式

//获取有用的字段
String[] colEnNames = (String[]) colNameMap.get(Constant.BATCH_COL_EN_NAMES);
List<String> colList = Arrays.asList(colEnNames);
//去除无用的字段
param.keySet().removeIf(key -> !colList.contains(key));

三、拓展思考

首先本文中监控图是在复现当时场景时人为制造的gc常见。

在cpu使用率图中,大家可以观察到cpu使用率上升时间确实跟gc的时间相吻合,但是并没有出现当时场景中的104%的CPU使用率

其实直接原因比较简单,就是因为系统虽然出现了full gc,但是并没有频繁出现。

小范围低频率的full gc不太会引起系统的cpu飙升,这也是我们所看到的现象。

那么当时的场景是什么原因呢?

我们上文提到过,我们在堆内存中的大对象是会随着任务的进行逐步膨胀的,那么当我们的任务足够多,时间足够长,就有可能导致每次full gc后可用空间变得越来越小,当可用空间小到一定程度之后就,每次full gc完成之后发现空间还是不够使用,就会触发下一次的gc,从而导致最终结果的频繁发生gc,引起cpu频率的飙升不下。

四、问题排查总结

  • 当我们遇到线上cpu使用率过高的情况时,可以先查看是否是full gc引起的问题,注意要看的是jvm的监控,或者使用jstat相关命令查看。不要被机器内存监控所误导。
  • 如果确定是gc引起的问题,可以通过JProfiler直连线上jvm或者使用dump保存堆快照后离线分析。
  • 首先可以找到最大的对象,一般情况下是大对象引起的full gc。还有一种情况是,不像这么明显是四个大对象,也可能是比较均衡的十几个50mb的对象,具体情况还需要具体分析。
  • 通过上述工具找到确定有问题的对象后找到其堆栈对应的代码位置,通过代码分析找到问题的具体原因,通过其他现象推演猜测是否正确,进而找到问题的真正原因。
  • 根据问题的原因解决此问题。

当然,上述只是不算很复杂的排查情况,不同的系统肯定有不同的内存情况,我们应当具体问题具体分析,而从此次问题中可以学到的就是如果排查解决问题的思路。

相关文章
|
6天前
|
存储 SQL Apache
Flink + Fluss 实战: Delta Join 原理解析与操作指南
Flink Delta Join 通过复用源表数据替代本地状态,解决双流 Join 状态膨胀问题。结合 Fluss 流存储,实现高效双向 Lookup,显著降低资源消耗与 Checkpoint 时间,提升作业稳定性与恢复速度,已在阿里大规模落地。
84 13
Flink + Fluss 实战: Delta Join 原理解析与操作指南
|
15天前
|
消息中间件 人工智能 NoSQL
AgentScope x RocketMQ:打造企业级高可靠 A2A 智能体通信基座
基于 RocketMQ SDK 实现了 A2A 协议的 ClientTransport 接口(部分核心代码现已开源),并与 AgentScope 框架深度集成,共同构建了全新的 A2A 智能体通信基座,为多智能体应用提供企业级、高可靠的异步协同方案。
240 40
|
14天前
|
SQL 人工智能 自然语言处理
让AI真正懂数据:猫超Matra项目中的AI知识库建设之路
本文介绍猫超基于大模型的AI数据助手Matra实践,构建面向Data Agent的知识库体系,通过知识图谱与ReAct框架实现智能取数,提升数据研发效率与业务分析能力。
112 20
让AI真正懂数据:猫超Matra项目中的AI知识库建设之路
|
15天前
|
监控 Java 开发工具
Android 崩溃监控实战:一次完整的生产环境崩溃排查全流程
某 App 新版上线后收到大量用户投诉 App 闪退和崩溃。仅凭一条崩溃日志和会话追踪,团队如何在2小时内锁定「快速刷新导致数据竞态」这一根因?本文带你复现真实生产环境下的完整排查路径:从告警触发、堆栈分析、符号化解析,到用户行为还原——见证 RUM 如何让“无法复现的线上崩溃”无所遁形。
169 34
|
13天前
|
弹性计算 Kubernetes 安全
已上线!云监控 2.0 面向实体的全链路日志审计与风险溯源
在云端,一次 API 调用背后可能隐藏着一场数据泄露;一个异常进程背后,或许是 AK 泄露引发的链式攻击。传统日志“看得见却看不懂”,而云监控 2.0 日志审计通过 UModel 实体建模,将分散在 ACS、K8s、主机各层的日志自动串联。
118 31
|
人工智能 缓存 运维
探秘 AgentRun丨通过无代码创建的 Agent,如何用高代码进行更新?
AgentRun 打破 AI Agent 开发困局,无代码快速验证想法,一键转高代码实现深度定制。60 秒创建 Agent,支持多模型、工具集成与 Prompt 优化;业务增长后可平滑演进,保留配置生成高质量代码,助力从原型到生产的持续迭代。
170 25
|
13天前
|
监控 Java C语言
揭开 Java 容器“消失的内存”之谜:云监控 2.0 SysOM 诊断实践
本文介绍云原生环境下Java应用内存超限问题的诊断与治理,聚焦容器化后常见的JVM堆外内存、JNI内存泄漏、LIBC分配器特性及Linux透明大页等导致OOM的根源,结合阿里云SysOM系统诊断工具,通过真实案例详解如何实现从应用到系统的全链路内存分析,精准定位“消失的内存”,提升资源利用率与稳定性。
104 19
|
13天前
|
人工智能 安全 开发者
快速构建企业 AI 开放平台,HiMarket 重磅升级快速构建企业 AI 开放平台,HiMarket 重磅升级
HiMarket是阿里开源的AI开放平台,助力企业构建Agent/MCP/Model市场,提供统一的AI资源管理、安全治理与协作能力,支持一键部署,推动AI规模化落地。
155 14
|
23小时前
|
自然语言处理 fastjson Java
FastJson:大面积故障规
本文记录了一次由Kotlin语法混淆引发的FastJson反序列化故障排查过程。因误将`{}`赋值给Java对象字段,导致FastJson解析时触发`kotlin_error`静态标记位异常,进而引发全局反序列化失败。问题根源在于多语言混编下语法差异及框架对异常状态的不可逆处理,最终通过代码审查与原理分析定位解决,凸显了对底层机制理解的重要性。