在电商领域,精准的销售预测直接影响库存管理、营销策略和资金周转效率。本文将介绍如何基于淘宝API数据构建销售预测模型,并通过代码实现全流程分析。
- 数据采集与预处理
通过淘宝开放API获取历史销售数据,核心字段包括:
日期($t$)
日销售额($y_t$)
促销活动标识($p_t$)
流量UV($u_t$)
数据清洗关键步骤:
import pandas as pd
API数据读取
data = pd.read_json("taobao_api.json")
处理缺失值
data.fillna({'promotion': 0, 'uv': data['uv'].median()}, inplace=True)
构造时间特征
data['day_of_week'] = data['date'].dt.dayofweek
data['is_holiday'] = data['date'].apply(lambda x: 1 if x in holiday_list else 0)
- 特征工程
构建影响销售的核心特征: $$ \begin{cases} \text{时间特征:} & t,\ \sin(\frac{2\pi t}{7}),\ \cos(\frac{2\pi t}{365}) \ \text{行为特征:} & u_t,\ \frac{y_{t-1}}{u_{t-1}} \ \text{促销特征:} & p_t,\ p_t \times u_t \end{cases} $$
from sklearn.preprocessing import StandardScaler
滞后特征创建
data['sales_lag7'] = data['sales'].shift(7)
交互特征
data['promo_uv'] = data['promotion'] * data['uv']
标准化
scaler = StandardScaler()
features = ['uv', 'sales_lag7', 'promo_uv']
data[features] = scaler.fit_transform(data[features])
- 模型构建与训练
采用XGBoost回归模型,其目标函数为: $$ \text{obj}(\theta) = \sum_{i=1}^{n} l(y_i, \hat{y}i) + \sum{k=1}^{K} \Omega(f_k) $$ 其中正则项 $\Omega(f_k) = \gamma T + \frac{1}{2}\lambda |w|^2$
训练代码:
from xgboost import XGBRegressor
from sklearn.model_selection import train_test_split
X = data[['day_of_week', 'uv', 'sales_lag7', 'promo_uv']]
y = data['sales']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = XGBRegressor(
n_estimators=500,
max_depth=5,
learning_rate=0.05
)
model.fit(X_train, y_train)
- 模型评估
使用MAPE(平均绝对百分比误差)评估: $$ \text{MAPE} = \frac{100%}{n} \sum_{t=1}^{n} \left| \frac{y_t - \hat{y}_t}{y_t} \right| $$
from sklearn.metrics import mean_absolute_percentage_error
pred = model.predict(X_test)
mape = mean_absolute_percentage_error(y_test, pred) * 100
print(f"预测误差:{mape:.2f}%")
- 业务应用场景
结语
通过API数据构建的销售预测模型,可将库存周转率提升15%-30%,同时降低滞销风险。模型需持续迭代,建议每月更新特征权重: $$ w_{new} = w_{old} + \alpha \cdot \frac{\partial \text{obj}}{\partial w} $$
提示:实际部署时需建立自动化数据管道,通过crontab每日更新预测结果。