生产环境缺陷管理

简介: 在大型团队中,多分支开发易导致bug漏修、漏发,引发严重生产事故。我们基于go-git打造通用化工具git-poison,实现bug的分布式追溯与管理,支持投毒、解毒、银针三步卡点,自动阻塞带缺陷版本发布,降低协同成本,提升发布安全性,已在实际流程中稳定运行一年以上。

在一个大型团队中,bug协同管理是一件复杂的事情,发布经理要追版本bug,运维同学要评估bug影响范围,开发同学要在多个开发分支同时修复同一个bug,很容易出现bug漏提交、漏确认等生产安全问题。
本团队也出现过一起不同分支漏提交bugfix导致的一起P1故障(最高等级),该bug在生产环境进行hotfix时,漏掉了少量集群导致该二次故障。举个相似的例子,某品牌汽车发现潜在安全隐患进行召回,但却遗漏了某个小地区,偏偏在遗漏的地区,发生了安全事故导致有人员伤亡。
我们基于go-git开发实现了通用化的git-poison,通过分布式源码管理bug追溯、查询,可复制性高,适用于所有git仓库,与分支模式和代码仓库无关。bug管理不依赖人与人之间沟通协调,降低了认知负担。
Bug为什么重复翻车
任何软件都会有bug。即使再全面的测试,再细致的代码review,也不能保证线上的每一段代码都bug-free。但是已经识别到的bug,为什么还会重复翻车呢?归根结底,git多分支开发模式会导致bug扩散。引入bug和发现和修复bug的时间异步,口头沟通确认bug易疏漏。
很多人看到前言的故障可能会认为,这只是“不小心”犯了个错误,下次再“细心”一点儿就好了。其实不是的,在百人规模的团队中,人犯错可以说是必然的。

图1 (Baron Schwartz "Approaching the Unacceptable Workload Boundary")
上图形象展示了人与人之间的协同成本。10人团队的整体协同一次的沟通次数为90/2=45次,那么100人则是4650次。这个次数只是相互协同一次,大多数场景下,由于bug和bugfix是随时出现的,再加上人的失误 (沟通中忘了某些bug等),所以一般来讲,一个发布流程至少需要前后同步三次,沟通成本巨大。所以谁能打包票,在这个流程中不犯错?只有通过工具来进行自动化管理才能保证从“不做错”到“做不错”。
几个典型翻车场景
场景一:未修复bug代码上线

图2 发布同学多方协同
微服务化盛行,系统各服务独立发布,发布owner也会选择本组比较有经验的同学,但仍旧不能避免开发与发布之间的信息割裂。该类问题有很多种表现形态,举例来说:
● 我是一名开发:我发现了一个新Bug,我得赶紧告诉版本发布负责人,叫停本次版本发布;
● 我是一名测试:我发现了一个新Bug,我需要评估线上该Bug受影响的范围,安排hotfix;
● 我是一名运维:我在调查一个生产问题,我不知道这是不是一个已知问题,我去问问开发;
版本发布同学,作为整个流程的核心人物,在这个繁琐的流程中极易犯错。
场景二:已修复bug但没修全
还有一类情况,就是针对分支开发的代码漏合。

图3 分支开发漏合bugfix
某一分支发现bug时(参考上图branch master),第一时间一定会在master分支上进行修复。然而此时带有该bug的branch1就被遗漏了。该问题在多个LTS(Long Time Support)分支的开发模式中尤其严重,每个版本都需要发布同学double check有无重点bugfix漏合。
场景三:已修复bug线上漏发
这就是前言提到的场景。人为疏漏。
漏发确实是非常大的问题,但是也有客观原因。面对千万级别的生产环境,数十年多个生产版本共存,面临这样的组合爆炸,人肉确认hotfix发布范围不遗漏确实是很大的挑战。

图4 线上多种环境组合,发布同学易遗漏
如上图,假如所有集群按物理ENV分为六组(线上生产远大于此),例子里本次发布bugfix的同学就是漏掉了ENV5的集群,已知bug也刚好在这个分组的集群中再次出现了。
发布卡点Bug信息
因此,应当存在全局角色来维护bug相关信息。任何角色、任何时间、任何地点都能够编辑和访问。
无论是devops模式,还是传统的专职“研发,测试,运维”模式,都会面临负责发布的负责人,单点评估整个版本的bugfix以及确认未修复bug,充当“人肉pipeline”。作为一个分布式系统开发人员,能否使用分布式工具来解决分布式沟通协同的老大难问题呢?
git-poison的出现,不仅能实时在“开发,测试,发布”间同步所有已知问题,还能参与发布卡点,确认当前版本的未修复bug信息,节约人力成本。

图5 多方调用git-poison满足需求
如何使用
git-poison基于go-git的分布式源码管理,实现bug的追溯、查询和反馈,灵活&&可复制性高,适用于任何开发模式以及任意代码仓库。另外,git-poison不依赖人与人之间的协作沟通,减少认知负担沟通成本,自动化精准召回bug中毒域,实现poison commit发布阻塞。

图6 git-poison 投毒/解药/银针 (yum install git-poison)
对于开发者,只需要记住一件事:抓紧投毒!
回到前言说到的P1故障,使用git-poison就能简单有效避免“重复翻车”的场景:
● 值班:线上出现故障,定位问题。使用git-posion投毒。
● 开发:bug修复,使用git-poison解毒。
● 发布hotfix:发布完毕后,使用git-poison银针,确保线上所有带bug的版本,都带有本次的bugfix。
如何实现
每一次投毒/解毒,git-poison的poisons远程git仓库中都会生成/更新一条对应记录。不同代码仓库对应不同分支,隔离不同源的posions信息。
{ "poison":"1q234tre5467gcs7yui8ew13", "cure":"9875jgbsw32gtx6djri8sofi0h", "comment":"[to #12345678] service iohang", "editor":"Iris",}
check-commit则应用了git原生强大的history tree管理。

图7 红色QW为毒药commit下的git历史DAG
如上图,假如我们当前在release分支上,上次的发布commit是B,当前的发布commit是X。通过 git rev-list 可以直接获取到整个DAG(Directed Acyclic Graph)。结合git-poison的记录,若红色的Q和W是没有解药的poison,则git-poison会阻塞本次发布,返回投毒同学以及对应bug的记录文档信息。
假如我们在Dev分支上查询L是否“有毒”,则git-poison会返回“healthy”。
最佳实践
发布减负

图8 发布平台使用git-poison进行卡点
引入git-poison后,在团队的发布流程中,发布平台会调用git-poison自动导入本次版本发布的“Bugfix列表”和“未修复Bug列表”,便于发布经理评估该版本的质量风险,无需再口头追个确认。包括本次发布修复的问题列表,以及是否有未解决的bug。
Before After
1.发布同学git log两次发布之间所有的commit
2.发布同学筛选本模块相关commit
3.拉群一一询问对应patch owner 1.发布平台自动调用git-poison导入未修复bug,
发布经理评估发布风险
风险观测

图9 git-poison 联动线上风险展示
运维平台可以集成git-poison来检查线上部署的服务版本是否存在中毒情况。线上风险一目了然。尤其是发现一个新bug后,值班同学可以立即投毒,并通过该页面获取该bug影响的范围。
Before After
1.值班同学发现bug
2.值班同学去代码仓库查找引入bug的commit对应时间
3.获取线上所有模板找到对应的build版本
4.人肉排查该bug是否在对应版本中 1.值班同学发现bug
2.使用git-poison进行投毒查看影响范围
结语
目前git-poison已经在公司内部开源,团队已经实现、使用并集成到发布平台管理Bug一年多。开发同学本地使用顺畅,学习成本低,发布流程中多次有效阻塞带bug的版本,并为定位bug影响范围提供极大便利。

相关文章
|
1天前
|
jenkins 持续交付 调度
项目《神领物流》
本项目为自研物流系统,基于微服务架构实现智能调度与管控,涵盖用户、快递员、司机多端应用。采用GitFlow管理代码,通过Jenkins实现持续集成,提交后自动构建,保障开发效率与系统稳定,类似顺丰速运模式,面向C端提供高效快递服务。(239字)
|
1天前
|
缓存 数据建模 文件存储
EFC&CTO:缓存引发数据不一致问题排查与深度解析
EFC是NAS自研分布式文件系统客户端,近期升级支持多客户端分布式缓存,兼容NAS、CPFS、OSS。因未适配CTO测试,发版时出现data mismatch。排查发现非单纯缓存读旧数据问题,通过NFS挂载验证确认文件系统数据被破坏,挑战超出预期。
|
1天前
|
设计模式 Java 程序员
推荐书籍
推荐多本Java经典书籍:《Head First Java》适合入门,《Java核心技术》深入巩固基础,《Java编程思想》整合设计模式,适合进阶。并发方面有《Java并发编程之美》等,JVM推荐《深入理解Java虚拟机》与《实战JVM》。体系全面,适合不同阶段学习。
|
1天前
|
负载均衡 算法 Java
微服务篇
SpringBoot核心原理是自动装配,通过@SpringBootApplication注解实现配置类、组件扫描与自动配置。其启动流程包括环境初始化、上下文创建与自动化配置。常用起步依赖如web、redis等;支持properties、YAML等配置文件,后加载的覆盖先加载的。项目通过Feign、Ribbon实现服务通信与负载均衡,使用Nacos做注册与配置中心,Sentinel或Hystrix实现限流熔断,Gateway实现网关限流与CORS跨域控制,结合Spring Cloud五大组件构建微服务架构。
|
1天前
|
消息中间件 存储 缓存
MQ篇
本项目采用RabbitMQ、Kafka和EMQ实现异步通信与数据采集。RabbitMQ用于服务解耦、流量削峰,支持多种消息模式与高可用集群;Kafka处理高吞吐用户行为数据,保障实时推荐与数据同步;EMQ基于MQTT协议实现物联网设备与服务器间可靠通信,支持QoS分级与延迟发布,确保消息不丢不重。三者协同提升系统性能与稳定性。
|
1天前
|
Arthas 监控 Java
jvm相关
本节介绍Arthas常用命令:实时监控系统数据(dashboard)、查看JVM线程、内存、系统属性(sysprop)、环境变量(sysenv)、性能计数器(perfcounter)、日志配置(logger)及静态属性(getstatic)等,支持动态修改与诊断,助力Java应用排查问题。
|
1天前
|
运维 NoSQL 测试技术
Redis:内存陡增100%深度复盘
事故源于大KEY在业务高峰时占满带宽,导致Redis内存使用率骤升至100%。虽有淘汰策略,但缓冲区(输入/输出)激增吞噬内存,主线程阻塞,命令无法处理,最终引发GET/SET超时崩溃。根本原因为大KEY与高流量叠加,触发缓冲区溢出,超出实例承载极限。
|
1天前
|
fastjson Java Kotlin
FastJson:大面积故障规避案例
不到两年开发中,已三次踩坑FastJson,版本差异大,使用需谨慎。项目为Kotlin/Java/Groovy混编:Java生态完善;Kotlin语法简洁、支持协程,但工具链兼容差;Groovy用得少,依赖模型辅助。曾因反序列化异常致预发大量报错,排查发现为FastJson隐患所致,影响广泛,令人后怕。
|
1天前
|
Ubuntu Java Linux
Docker
本文介绍Docker基础操作,涵盖镜像打包、容器管理及Dockerfile编写。通过示例演示如何基于Ubuntu镜像构建Java运行环境,打包Spring Boot应用(linuxDemo.jar),并实现容器化部署与端口映射,最终验证服务运行状态,适合初学者快速掌握Docker核心技能。(239字)
|
1天前
|
数据可视化 数据挖掘 BI
性能优化专题
两幅图像展示了数据可视化图表,包含柱状图与折线图的组合,呈现清晰的趋势分析与对比数据,适用于业务报表、数据分析等场景,助力直观理解关键指标变化。