首先,你需要知道,进程是由内核来管理和调度的,进程的切换只能发生在内核态。所以,进程的上下文不仅包括了虚拟内存、栈、全局变量等用户空间的资源,还包括了内核堆栈、寄存器等内核空间的状态。因此,进程的上下文切换就比系统调用时多了一步:在保存当前进程的内核状态和 CPU 寄存器之前,需要先把该进程的虚拟内存、栈等保存下来;而加载了下一进程的内核态后,还需要刷新进程的虚拟内存和用户栈。
保存上下文和恢复上下文的过程并不是“免费”的,需要内核在 CPU 上运行才能完成。
每次上下文切换都需要几十纳秒到数微秒的 CPU 时间。这个时间还是相当可观的,特别是在进程上下文切换次数较多的情况下,很容易导致 CPU 将大量时间耗费在寄存器、内核栈以及虚拟内存等资源的保存和恢复上,进而大大缩短了真正运行进程的时间。Linux 通过 TLB(Translation Lookaside Buffer)来管理虚拟内存到物理内存的映射关系。当虚拟内存更新后,TLB 也需要刷新,内存的访问也会随之变慢。特别是在多处理器系统上,缓存是被多个处理器共享的,刷新缓存不仅会影响当前处理器的进程,还会影响共享缓存的其他处理器的进程。
TLB,这个东西的资料比较晦涩难懂,我大致搜了一下,非常多的专业术语,不太建议大家展开了,等到我们真的要用上的时候,再去了解也不晚,大致内容我觉得如果要展开,那就展开我下面的这个部分就已经足够了。
TLB是一种高速缓存,内存管理硬件使用它来改善虚拟地址到物理地址的转换速度。当前所有的个人桌面,笔记本和服务器处理器都使用TLB来进行虚拟地址到物理地址的映射。使用TLB内核可以快速的找到虚拟地址指向物理地址,而不需要请求RAM内存获取虚拟地址到物理地址的映射关系。
虚拟地址和物理地址的话,大致是这么理解的。每个进程都有自己独立的4G内存空间,各个进程的内存空间具有类似的结构。一个新进程建立的时候,将会建立起自己的内存空间,此进程的数据,代码等从磁盘拷贝到自己的进程空间,哪些数据在哪里,都由进程控制表中的task_struct记录,它会有一条链表,记录中内存空间的分配情况,哪些地址有数据,哪些地址无数据,哪些可读,哪些可写,都可以通过这个链表记录。每个进程已经分配的内存空间,都与对应的磁盘空间映射
可是计算机明明没有那么多内存(n个进程的话就需要n*4G)内存。还有建立一个进程,就要把磁盘上的程序文件拷贝到进程对应的内存中去,对于一个程序对应的多个进程这种情况是根本不需要这样操作的。
所以,每个进程的4G内存空间只是虚拟内存空间,每次访问内存空间的某个地址,都需要把地址翻译为实际物理内存地址。所有进程共享同一物理内存,每个进程只把自己目前需要的虚拟内存空间映射并存储到物理内存上。进程要知道哪些内存地址上的数据在物理内存上,哪些不在,还有在物理内存上的哪里,需要用页表来记录。页表的每一个表项分两部分,第一部分记录此页是否在物理内存上,第二部分记录物理内存页的地址(如果在的话)。当进程访问某个虚拟地址,去看页表,如果发现对应的数据不在物理内存中,则缺页异常。缺页异常的处理过程,就是把进程需要的数据从磁盘上拷贝到物理内存中。