服务器提供文件传输功能,需要将磁盘上的文件读取出来,通过网络协议发送到客户端。如果需要你自己编码实现这个文件传输功能,你会怎么实现呢?
通常,你会选择最直接的方法:从网络请求中找出文件在磁盘中的路径后,如果这个文件比较大,假设有 320MB,可以在内存中分配 32KB 的缓冲区,再把文件分成一万份,每份只有 32KB,这样,从文件的起始位置读入 32KB 到缓冲区,再通过网络 API 把这 32KB 发送到客户端。接着重复一万次,直到把完整的文件都发送完毕。如下图所示:
不过这个方案性能并不好,主要有两个原因。
首先,它至少经历了 4 万次用户态与内核态的上下文切换。因为每处理 32KB 的消息,就需要一次 read 调用和一次 write 调用,每次系统调用都得先从用户态切换到内核态,等内核完成任务后,再从内核态切换回用户态。可见,每处理 32KB,就有 4 次上下文切换,重复 1 万次后就有 4 万次切换。
这个系统调用的内容,我们可以结合下面补充的三种“上下文切换”来理解,上下文切换分别是进程,线程,中断三种。
补充:进程上下文切换
Linux 按照特权等级,把进程的运行空间分为内核空间和用户空间,分别对应着下图中, CPU 特权等级的 Ring 0 和 Ring 3。内核空间(Ring 0)具有最高权限,可以直接访问所有资源,而用户空间(Ring 3)只能访问受限资源,不能直接访问内存等硬件设备,必须通过系统调用陷入到内核中,才能访问这些特权资源。
换个角度看,也就是说,进程既可以在用户空间运行,又可以在内核空间中运行。进程在用户空间运行时,被称为进程的用户态,而陷入内核空间的时候,被称为进程的内核态。从用户态到内核态的转变,需要通过系统调用来完成。比如,当我们查看文件内容时,就需要多次系统调用来完成:首先调用 open() 打开文件,然后调用 read() 读取文件内容,并调用 write() 将内容写到标准输出,最后再调用 close() 关闭文件。