xxljob本地运行

简介: 本文介绍XXL-JOB分布式任务调度框架的本地部署与使用流程,涵盖源码获取、服务端数据库初始化、配置修改、服务启动及客户端注册执行器等步骤,并演示如何配置调度任务、选择路由策略及测试执行效果,帮助快速上手使用。

1.源码获取

读者朋友们可以自行去官网下载,也可以使用我已经增加了核心模块注释的压缩包:

xxl-job-master.zip

2.服务端运行

2.1 导入数据库脚本

  • 位置如下:

运行后会有8张表,效果如下:


  • xxl_job_lock:任务调度锁表;
  • xxl_job_group:执行器信息表,维护任务执行器信息;
  • xxl_job_info:调度扩展信息表: 用于保存XXL-JOB调度任务的扩展信息,如任务分组、任务名、机器地址、执行器、执行入参和报警邮件等等;
  • xxl_job_log:调度日志表: 用于保存XXL-JOB任务调度的历史信息,如调度结果、执行结果、调度入参、调度机器和执行器等等;
  • xxl_job_log_report:调度日志报表:用户存储XXL-JOB任务调度日志的报表,调度中心报表功能页面会用到;
  • xxl_job_logglue:任务GLUE日志:用于保存GLUE更新历史,用于支持GLUE的版本回溯功能;
  • xxl_job_registry:执行器注册表,维护在线的执行器和调度中心机器地址信息;
  • xxl_job_user:系统用户表;

2.2 更改数据源配置

2.3 启动服务端并访问

访问本地地址:

3.客户端运行

启动后,去浏览器观看,可以看到默认已经注册进去一个服务信息

3.1 注册执行器

xxl-job不同于spring-task,是需要在控制台配置定时任务的

弹窗中编写:

稍等会刷新页面,可以看到注册地址已经有了一个,并且ip就是自己的服务ip

3.2 配置调度信息

路由策略说明:

  • FIRST(第一个):固定选择第一个执行器;
  • LAST(最后一个):固定选择最后一个执行器;
  • ROUND(轮询):在线的执行器按照轮询策略选择一个执行
  • RANDOM(随机):随机选择在线的执行器;
  • CONSISTENT_HASH(一致性HASH):每个任务按照Hash算法固定选择某一台执行器,且所有任务均匀散列在不同执行器上。
  • LEAST_FREQUENTLY_USED(最不经常使用):使用频率最低的执行器优先被选举;
  • LEAST_RECENTLY_USED(最近最久未使用):最久未使用的执行器优先被选举;
  • FAILOVER(故障转移):按照顺序依次进行心跳检测,第一个心跳检测成功的执行器选定为目标执行器并发起调度;
  • BUSYOVER(忙碌转移):按照顺序依次进行空闲检测,第一个空闲检测成功的执行器选定为目标执行器并发起调度;
  • SHARDING_BROADCAST(分片广播):广播触发对应集群中所有执行器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务

4.测试执行效果

一般任务编写完成,规则配置完成之后,我们会测试一下任务是否正常,此时就如下操作即可:


在弹窗中,可以增加执行参数,也可以指定固定某台ip(debug调试就可以写自己本地ip),这里我们直接点击保存执行

执行完成后,会弹窗:执行成功,此时我们点击:查看日志


相关文章
|
12天前
|
数据采集 人工智能 安全
|
7天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
344 164
|
6天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
345 155
|
7天前
|
编解码 人工智能 自然语言处理
⚽阿里云百炼通义万相 2.6 视频生成玩法手册
通义万相Wan 2.6是全球首个支持角色扮演的AI视频生成模型,可基于参考视频形象与音色生成多角色合拍、多镜头叙事的15秒长视频,实现声画同步、智能分镜,适用于影视创作、营销展示等场景。
581 4
|
15天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
1019 7

热门文章

最新文章