大模型应用开发中MCP与Function Call的关系与区别

简介: Function Call依赖模型直接调用工具,适用于单一场景;MCP通过标准化协议实现模型与工具解耦,支持跨模型、跨设备的动态集成。二者可协同工作,形成“意图解析-协议传输-工具执行”分层架构,未来将趋向融合,推动AI应用生态标准化发展。

三、技术实现差异
Function Call的实现则是在大模型的架构体系内,当模型处理用户输入时,判断是否需要调用外部函数。若需要,模型会根据预设规则和接口定义,将请求发送至相应的外部函数或服务,等待其返回结果,并将结果融入到模型后续的处理流程中。例如在代码生成场景中,大模型生成代码过程中若遇到特定功能需求,通过 Function Call 调用代码库中的相关函数来完善代码。
Function Call 工作流程(以OpenAI为例)

MCP 遵循客户端 - 服务器架构,主要由 MCP 主机、MCP 客户端和 MCP 服务器三个核心组件构成。MCP 主机是搭载 AI 智能体的应用系统,负责发起请求;MCP 客户端位于 Host 应用程序内部,管理与 MCP 服务器的点对点连接,承担请求标准化、响应处理以及安全 / 身份验证等任务;MCP 服务器依据 MCP 标准,公开提供上下文数据、工具或 API 服务,可连接各类数据源。其通信协议采用 JSON - RPC 2.0,支持 Stdio、HTTP 配合 Server - Sent Events(SSE)等多种传输方式。
MCP 工作流程

关键区别:
● MCP在模型与工具间插入标准化中间层,实现双向解耦
● Function Call需要模型直接输出特定格式,工具绑定模型
四、能力范围对比
能力维度 Function Call MCP
跨模型兼容性 ❌ 仅限支持该规范的模型(如GPT) ✅ 任何兼容MCP协议的模型均可使用
工具热插拔 ❌ 需重新部署模型 ✅ 工具可动态注册/卸载
权限控制粒度 ⚠️ 依赖模型实现 ✅ 协议层支持操作授权验证
跨设备调用 ❌ 限于本地环境 ✅ 支持远程/云工具调用
典型案例:
当需要同时调用本地Excel插件+云端CRM API时:
● Function Call方案:需为GPT单独开发集成桥接层
● MCP方案:Excel工具注册为MCP Server,CRM通过标准接口接入
五、协同工作模式
二者实际可形成互补的上下游关系:
用户请求 → 大模型生成Function Call → 转换为MCP请求 → 调用工具
具体协作流程:

  1. 模型通过Function Call解析用户意图
  2. 将函数调用参数转换为MCP标准报文
  3. MCP客户端分发给对应工具服务器
  4. 结果通过MCP返回模型生成回答
    优势:
    ● 保留Function Call的意图解析能力
    ● 获得MCP的工具生态扩展性
    六、应用场景选择指南
    场景 推荐方案 原因
    快速验证单一模型能力 Function Call 开发简单,无额外协议开销
    企业级多工具集成系统 MCP 避免供应商锁定,支持未来模型更换
    需要严格权限控制的金融场景 MCP + Function Call MCP协议层实现操作审计,Function Call做解析
    跨平台智能硬件控制 纯MCP架构 实现设备-模型-云的标准化通信
    七、技术演进趋势
    融合加速:
    OpenAI等厂商已支持Function Call转MCP网关(如通过mcp-adapter库)

    将OpenAI Function Call转为MCP请求

    from mcp_adapter
    import OpenAIAdapteradapter = OpenAIAdapter(tool_config="tools.json")
    mcp_request = adapter.convert(function_call)
    协议标准化:
    MCP正在吸收Function Call的Schema定义优点,形成统一工具描述规范:

    融合后的工具描述文件示例

    tool:
    name: stock_analysis
    description: 获取股票实时数据
    parameters:

    继承Function Call风格

     - name: symbol
    
    type: string
    mcp_endpoint: https://api.example.com/mcp/stocks
    新开发范式:

未来发展趋势:
● Function Call 将作为模型原生基础能力持续进化
● MCP 将成为企业AI基础设施的事实标准协议
● 二者边界逐渐模糊,最终形成“模型解析-协议传输-工具执行” 分层架构

相关文章
|
12天前
|
数据采集 人工智能 安全
|
7天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
344 164
|
6天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
345 155
|
7天前
|
编解码 人工智能 自然语言处理
⚽阿里云百炼通义万相 2.6 视频生成玩法手册
通义万相Wan 2.6是全球首个支持角色扮演的AI视频生成模型,可基于参考视频形象与音色生成多角色合拍、多镜头叙事的15秒长视频,实现声画同步、智能分镜,适用于影视创作、营销展示等场景。
575 4
|
15天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
1013 7