One Trick Per Day

简介: 初始化Map建议用Guava指定预期大小,避免扩容;禁用Executors创建线程池,防止OOM,应手动通过ThreadPoolExecutor或Guava方式创建;Arrays.asList返回不可变集合,禁止修改操作;遍历Map优先使用entrySet或forEach提升性能;SimpleDateFormat非线程安全,建议用ThreadLocal或JDK8新时间API;并发修改记录需加锁,推荐乐观锁配合version机制。

1.初始化Map大小并非用多少指定多少
● 初始化Map并非用多少初始化Size是多少,建议使用Guava,避免扩容引起的动荡()
说明
● 如:Map map = new HashMap<>(1); 在具体使用时,并非size=1,而是最近的2的幂等,如1实际是2,3实际是4,9实际是16
使用方法
● 依赖gvaua:Map map = Maps.newHashMapWithExpectedSize(7);


com.google.guava
guava
17.0

● 手动声明:Map map = new HashMap<>(实际存储个数 / 0.75 + 1);
2.线程池初始化严禁使用Executors
使用线程池时候,我们可能会使用下面四个场景,这在alibaba代码规范中都是明令禁止的
// 创建一个单线程化的Executor[因为数量固定,可能会堆积大量请求,导致OOM]
private static ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor();

// 创建一个固定数目线程的线程池[因为数量固定,可能会堆积大量请求,导致OOM]
private static ExecutorService fixedThreadPool = Executors.newFixedThreadPool(10);

// 创建一个可执行命令的单线程Executor[可能会创建大量的线程,导致OOM]
private static ExecutorService singleThreadScheduledExecutor = Executors.newSingleThreadScheduledExecutor();

// 创建一个可缓存的线程池(60S存活时间)[可能会创建大量的线程,导致OOM]
private static ExecutorService cachedThreadPool = Executors.newCachedThreadPool();
我们先来一个简单的例子,模拟一下使用 Executors 导致 OOM 的情况。
public class ExecutorsDemo {
private static ExecutorService executor = Executors.newFixedThreadPool(15);
public static void main(String[] args) {
for (int i = 0; i < Integer.MAX_VALUE; i++) {
executor.execute(new SubThread());
}
}
}
class SubThread implements Runnable {
@Override
public void run() {
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
//do nothing
}
}
}
通过指定 JVM 参数:-Xmx8m -Xms8m 运行以上代码,会抛出 OOM:
Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded
at java.util.concurrent.LinkedBlockingQueue.offer(LinkedBlockingQueue.java:416)
at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1371)
at com.hollis.ExecutorsDemo.main(ExecutorsDemo.java:16)
以上代码指出,ExecutorsDemo.java 的第 16 行,就是代码中的 executor.execute(new SubThread());。
通过上面的例子,我们知道了 Executors 创建的线程池存在 OOM 的风险,那么到底是什么原因导致的呢?我们需要深入 Executors 的源码来分析一下。其实,在上面的报错信息中,我们是可以看出蛛丝马迹的,在以上的代码中其实已经说了,真正的导致 OOM 的其实是 LinkedBlockingQueue.offer 方法。
Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded
at java.util.concurrent.LinkedBlockingQueue.offer(LinkedBlockingQueue.java:416)
at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1371)
at com.hollis.ExecutorsDemo.main(ExecutorsDemo.java:16)
如果读者翻看代码的话,也可以发现,其实底层确实是通过 LinkedBlockingQueue 实现的:
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue());
}
如果读者对 Java 中的阻塞队列有所了解的话,看到这里或许就能够明白原因了。Java 中 的 BlockingQueue 主 要 有 两 种 实 现, 分 别 是 ArrayBlockingQueue 和 LinkedBlockingQueue。ArrayBlockingQueue 是一个用数组实现的有界阻塞队列,必须设置容量。LinkedBlockingQueue 是一个用链表实现的有界阻塞队列,容量可以选择进行设置,不设置的话,将是一个无边界的阻塞队列,最大长度为 Integer.MAX_VALUE。这里的问题就出在:不设置的话,将是一个无边界的阻塞队列,最大长度为Integer.MAX_VALUE。也就是说,如果我们不设置 LinkedBlockingQueue 的容量的话,其默认容量将会是 Integer.MAX_VALUE。 而 newFixedThreadPool 中创建 LinkedBlockingQueue 时,并未指定容量。此时,LinkedBlockingQueue 就是一个无边界队列,对于一个无边界队列来说,是可以不断的向队列中加入任务的,这种情况下就有可能因为任务过多而导致内存溢出问题。上面提到的问题主要体现在 newFixedThreadPool 和 newSingleThreadExecutor 两个工厂方法上,并不是说newCachedThreadPool 和 newScheduledThreadPool 这两个方法就安全了,这两种方式创建的最大线程数可能是Integer.MAX_VALUE,而创建这么多线程,必然就有可能导致 OOM

正确使用:
private static ExecutorService executor = new ThreadPoolExecutor(10, 10, 60L, TimeUnit.SECONDS,
new ArrayBlockingQueue(10));
这种情况下,一旦提交的线程数超过当前可用线程数时,就会抛出java.util.concurrent.RejectedExecutionException,这是因为当前线程池使用的队列是有边界队列,队列已经满了便无法继续处理新的请求。但是异常(Exception)总比发生错误(Error)要好。
但是部分alibaba作者更推荐使用guava创建对应的线程池,示例如下:
public class ExecutorsDemo {
private static ThreadFactory namedThreadFactory = new
ThreadFactoryBuilder()
.setNameFormat("demo-pool-%d").build();
private static ExecutorService pool = new ThreadPoolExecutor(5, 200,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue(1024), namedThreadFactory, new
ThreadPoolExecutor.
AbortPolicy());
public static void main(String[] args) {
for (int i = 0; i < Integer.MAX_VALUE; i++) {
pool.execute(new SubThread());
}
}
}
通过上述方式创建线程时,不仅可以避免 OOM 的问题,还可以自定义线程名称,更加方便的出错的时候溯源。
3.Arrays.asList之后不要调用修改操作
String[] str = new String[] { "you", "wu" };
List list = Arrays.asList(str);
因为asList返回的实际是一个Arrays内部类,并没有实现集合的修改方法(add/remove/clear)// 当操作修改方法时,会报UnsupportedOperationException。
第一种情况:list.add("yangguanbao"); 运行时异常。
第二种情况:str[0] = "gujin"; 那么 list.get(0)也会随之修改。[涉及栈堆指针操作,修改数组的数据,导致同样引用该数据的list值被改变]

4.使用 entrySet 遍历 Map 类集合 KV
说明:keySet 其实是遍历了 2 次,一次是转为 Iterator 对象,另一次是从 hashMap 中取出key 所对应的 value。而 entrySet 只是遍历了一次就把 key 和 value 都放到了 entry 中,效率更高。
如果是 JDK8,使用 Map.foreach 方法。
正例:values()返回的是 V 值集合,是一个 list 集合对象;keySet()返回的是 K 值集合,是一个 Set 集合对象;entrySet()返回的是 K-V 值组合集合。
5.SimpleDateFormat不要定义为static
SimpleDateFormat 是线程不安全的类,一般不要定义为 static 变量,如果定义为static,必须加锁,或者使用 DateUtils 工具类。
正例:注意线程安全,使用 DateUtils。亦推荐如下处理:
private static final ThreadLocal df = new ThreadLocal() {
@Override
protected DateFormat initialValue() {
return new SimpleDateFormat("yyyy-MM-dd");
}
};
说明:如果是 JDK8 的应用,可以使用 Instant 代替 Date,LocalDateTime 代替 Calendar,DateTimeFormatter 代替 SimpleDateFormat,官方给出的解释:simple beautiful strong immutable thread-safe。
6.并发修改同一记录时需要加锁
要么在应用层加锁,要么在缓存加锁,要么在数据库层使用乐观锁,使用 version 作为更新依据。
说明:如果每次访问冲突概率小于 20%,推荐使用乐观锁,否则使用悲观锁。乐观锁的重试次数不得小于 3 次

相关文章
|
1天前
|
人工智能 Java API
快速入门
本课程讲解JDK安装与环境变量配置、IDEA开发工具使用及Java基础语法。涵盖真实工作场景中的开发准备,如JDK和IDEA的安装激活、首个Java程序编写、注释规范、字面量类型及常用快捷键,助你快速上手Java开发。
|
1天前
|
C++
模型评估
模型评估涵盖能力、对齐与效率三大维度,涉及语言理解、知识问答、推理代码等任务,常用MMLU、C-Eval、GSM8K等基准,结合Hugging Face工具实现自动评测,面试关注幻觉检测、指标设计与人工协同评估。
|
1天前
|
缓存 算法 C++
模型推理加速
大模型推理加速关键技术:KV-Cache优化、连续批处理、投机解码、模型并行与vLLM等。涵盖原理、内存计算、优化策略及实战,助力高效部署与面试备战。
|
1天前
|
算法
模型压缩与量化
模型压缩通过量化、稀疏化、知识蒸馏等技术,减小模型体积与计算开销,助力大模型在端侧部署。涵盖INT8/INT4、GPTQ、SmoothQuant等方法,平衡压缩比、精度与速度,并支持实战量化加载,提升推理效率。
|
1天前
|
存储 机器学习/深度学习 编解码
预训练技巧
预训练是大模型的核心基础,涵盖混合精度、分布式训练、ZeRO优化、FlashAttention等关键技术,通过高效计算与显存优化,实现大规模模型的快速稳定训练。
|
1天前
|
机器学习/深度学习 存储 知识图谱
知识蒸馏
知识蒸馏是一种模型压缩技术,通过让小模型(学生)模仿大模型(教师)的输出或中间特征,实现性能逼近甚至超越。核心方法包括基于软标签的Hinton蒸馏、带温度的softmax平滑分布、以及利用隐藏层特征的特征蒸馏。分为黑盒(仅用输出)与白盒(访问内部)两种模式,广泛用于加速推理与提升小模型泛化能力。(238字)
|
1天前
|
机器学习/深度学习 算法 关系型数据库
强化学习
强化学习(RL)是一种通过智能体与环境交互,以最大化累积奖励为目标的学习方法。核心包括状态、动作、奖励、策略与价值函数,依赖试错和延迟奖励机制。常见算法如Q-learning、PPO、DPO等,广泛应用于游戏、机器人及大模型训练。结合人类反馈(RLHF),可实现对齐人类偏好的智能行为优化。(239字)
|
1天前
|
存储 物联网 决策智能
微调技术
微调是适配预训练模型的关键技术,涵盖指令微调、对齐微调与高效参数微调。LoRA通过低秩分解减少参数量,提升训练效率;其变体如LoRA+、QLoRA、AdaLoRA进一步优化性能与资源消耗。Prefix Tuning与Prompt Tuning则通过少量参数实现高效微调,适用于不同场景需求。(239字)
|
1天前
|
机器学习/深度学习 自然语言处理 算法
分词器详解
分词器将文本转为模型可处理的数字序列,主流算法有BPE、WordPiece和SentencePiece。BPE高效但中文支持弱;WordPiece用于BERT,适合英文;SentencePiece语言无关,支持中日文。实战中常用SentencePiece处理中文,Hugging Face工具处理英文。面试需掌握算法差异、中文分词策略、词汇表设计及OOV问题解决。
|
1天前
|
自然语言处理
主流大模型结构
本文介绍了四大模型架构:Encoder-Decoder、Decoder-Only、Encoder-Only和Prefix-Decoder,涵盖代表模型与应用场景。详解GPT系列演进、LLaMA发展及主流中文大模型,并对比GPT-4、LLaMA-3、Qwen等在架构、参数量与上下文长度等方面的异同。