基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比

简介: 本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。

1.算法运行效果图预览
(完整程序运行后无水印)

1.jpeg
2.jpeg

2.算法运行软件版本
vivado2019.2

matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

```top_LSB UUT(
.i_clk (i_clk),
.i_rst (i_rst),
.i_ywav (i_ywav),
.i_mark (i_mark),
.o_ywavLSB (o_ywavLSB),
.o_ywav0 (o_ywav0),
.o_mark (o_mark)
);

initial begin
    i_ywav=0;
    i_mark=0;

    // Initialize Inputs
    i_clk = 1;
    i_rst = 1;

    // Wait 100 ns for global reset to finish
    #100 
  i_rst = 0;  

    // Add stimulus here

end

always #5 i_clk=~i_clk;

parameter LEN = 65536;//导入数据的长度

reg signed[9:0]ywav[LEN:1];
integer fids1;
integer idx1=0,idx12=0;

initial
begin
//D:\code2\project_1
fids1 = $fopen("D:\code2\project_1\ywav2.txt","r");//导入数据的路径
idx1=0;
idx12=0;
while(!$feof(fids1))
@(posedge i_clk)
begin
$fscanf(fids1,"%d",ywav[idx1+1]);
idx1=idx1+1;
end
$fclose(fids1);
end

reg signed[3:0]mark[LEN:1];
integer fids2;
integer idx2=0,idx22=0;

initial
begin
fids2 = $fopen("D:\code2\project_1\Wmark.txt","r");//导入数据的路径
idx2=0;
idx22=0;
while(!$feof(fids2))
@(posedge i_clk)
begin
$fscanf(fids2,"%d",mark[idx2+1]);
idx2=idx2+1;
end
$fclose(fids2);
end

always @ (posedge i_clk)
begin
if(idx1 >= LEN+1)
begin
if(idx12==2*LEN+1)
idx12<=0;
else
idx12<=idx12+1;
end

  if(idx12<=LEN&idx22>=1)
  i_ywav<=ywav[idx12];
  else
  i_ywav<=0;

end

always @ (posedge i_clk)
begin
if(idx2 >= LEN+1)
begin
if(idx22==2*LEN+1)
idx22<=0;
else
idx22<=idx22+1;
end

  if(idx22<=LEN&idx22>=1)
  i_mark<=mark[idx22];
  else
  i_mark<=0;

end

endmodule

```

4.算法理论概述
音频水印技术是信息隐藏领域的一个重要分支,它通过在音频信号中嵌入特定的水印信息来实现版权保护、内容认证、数据追踪等功能。基于 LSB(Least Significant Bit,最低有效位)的音频水印算法因其简单高效而被广泛应用。现场可编程门阵列(FPGA)具有灵活性高、可重构性强、并行处理能力突出等优点,非常适合用于实现音频水印算法,能够满足不同应用场景下的实时性和性能要求。

   LSB 算法的核心思想是利用音频信号采样点的最低有效位来隐藏水印信息。对于音频信号的每一个采样点si,其在二进制表示下可以表示为:

3.jpg

   通过这种方式,将水印信息隐藏在音频信号中,人耳难以察觉音频信号在嵌入水印前后的差异,因为最低有效位的改变对音频信号的感知影响较小。

  音频信号在传输或处理过程中可能会经过各种滤波器,如低通滤波器、高通滤波器等。滤波操作可能会改变音频信号的频率特性,从而影响水印信息的提取。对于 LSB 算法,由于其嵌入位置在最低有效位,相对来说对滤波攻击具有一定的抵抗能力。但一些强烈的滤波操作仍可能导致水印信息丢失或错误提取。例如,在经过低通滤波器后,音频信号的高频部分被削弱,如果水印信息恰好嵌入在与高频相关的采样点最低有效位,可能会影响提取的准确性。

    音频压缩是常见的音频处理方式,如 MP3 压缩。在压缩过程中,音频信号的一些冗余信息被去除,可能会对水印信息造成破坏。LSB 算法在抗压缩攻击方面表现相对较弱,因为压缩算法可能会改变音频信号的采样点值,导致嵌入在最低有效位的水印信息丢失或错误。例如,MP3 压缩采用了心理声学模型,根据人耳听觉特性对音频信号进行压缩,可能会将一些对听觉影响较小的采样点进行较大幅度的量化处理,从而破坏水印信息。

    基于 LSB 的音频水印嵌入提取算法的复杂度相对较低。嵌入过程主要涉及音频信号的分帧、水印信息的预处理和 LSB 位替换操作,提取过程主要包括音频信号分帧、LSB 位提取、纠错解码和解密操作。这些操作在计算上相对简单,主要是一些基本的逻辑运算和位操作,因此算法的时间复杂度较低。
相关文章
|
4月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
462 0
|
5月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
295 3
|
5月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
214 6
|
4月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
237 8
|
4月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
273 8
|
4月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
5月前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
329 14
|
4月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
5月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
385 2
|
5月前
|
canal 算法 vr&ar
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
187 1

热门文章

最新文章