RNA-seq 差异分析的细节详解 (7)

简介: RNA-seq 差异分析的细节详解 (7)

引言

本系列 将开展全新的转录组分析专栏,主要针对使用 DESeq2 时可能出现的问题和方法进行展开描述。想要学习更多内容可以添加文末的学习交流群或客服QQ。

在任何数据分析中,评估数据质量并进行质量控制(也就是剔除质量不达标的那部分数据)是关键环节。一般而言,这些环节应在开始分析新数据集时尽早开展,要么是在差异表达测试之前,要么是与之同步进行。

我们所说的“质量”,是指数据是否符合我们的研究目的。我们的研究目标是找出差异表达的基因,尤其关注那些因实验处理过程中出现异常情况,导致从这些样本中获取的数据对我们研究目的产生负面影响的样本。

计数矩阵的热图展示

要深入了解计数矩阵,将其以热图的形式呈现往往能带来不少洞见。接下来,我们会介绍如何针对数据的不同转换方式来制作相应的热图。

library("pheatmap")
select <- order(rowMeans(counts(dds,normalized=TRUE)),
                decreasing=TRUE)[1:20]
df <- as.data.frame(colData(dds)[,c("condition","type")])
pheatmap(assay(ntd)[select,], cluster_rows=FALSE, show_rownames=FALSE,
         cluster_cols=FALSE, annotation_col=df)

pheatmap(assay(vsd)[select,], cluster_rows=FALSE, show_rownames=FALSE,
         cluster_cols=FALSE, annotation_col=df)

pheatmap(assay(rld)[select,], cluster_rows=FALSE, show_rownames=FALSE,
         cluster_cols=FALSE, annotation_col=df)

样本间距离的热图展示

转换后的数据还可以用于进行样本聚类分析。具体操作是,把 dist 函数用在转换后计数矩阵的转置上,从而计算出各样本之间的距离。

sampleDists <- dist(t(assay(vsd)))

通过绘制该距离矩阵的热图,我们可以直观地了解不同样本间的相似之处与差异所在。在使用热图函数时,需要依据样本间的距离来提供一个层次聚类 hc,若不这么做,热图函数就会依据距离矩阵中行与列之间的距离自行进行聚类分析。

library("RColorBrewer")
sampleDistMatrix <- as.matrix(sampleDists)
rownames(sampleDistMatrix) <- paste(vsd$condition, vsd$type, sep="-")
colnames(sampleDistMatrix) <- NULL
colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255)
pheatmap(sampleDistMatrix,
         clustering_distance_rows=sampleDists,
         clustering_distance_cols=sampleDists,
         col=colors)

样本主成分分析图的绘制

与距离矩阵紧密相连的是主成分分析(PCA)图,它将样本映射在由前两个主成分构成的二维平面上。利用这种图表,我们可以直观地观察实验协变量以及批次效应所产生的整体影响。

plotPCA(vsd, intgroup=c("condition", "type"))

还可以使用 ggplot 函数自定义 PCA 图。

pcaData <- plotPCA(vsd, intgroup=c("condition", "type"), returnData=TRUE)
percentVar <- round(100 * attr(pcaData, "percentVar"))
ggplot(pcaData, aes(PC1, PC2, color=condition, shape=type)) +
  geom_point(size=3) +
  xlab(paste0("PC1: ",percentVar[1],"% variance")) +
  ylab(paste0("PC2: ",percentVar[2],"% variance")) + 
  coord_fixed()

相关文章
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
8天前
|
人工智能 搜索推荐 Docker
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
DeepSeek R1 + LobeChat + Ollama:快速本地部署模型,创建个性化 AI 助手
2850 112
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
|
3天前
|
云安全 边缘计算 人工智能
对话|ESA如何助力企业高效安全开展在线业务?
ESA如何助力企业安全开展在线业务
1024 8
|
7天前
|
API 开发工具 Python
阿里云PAI部署DeepSeek及调用
本文介绍如何在阿里云PAI EAS上部署DeepSeek模型,涵盖7B模型的部署、SDK和API调用。7B模型只需一张A10显卡,部署时间约10分钟。文章详细展示了模型信息查看、在线调试及通过OpenAI SDK和Python Requests进行调用的步骤,并附有测试结果和参考文档链接。
1546 9
阿里云PAI部署DeepSeek及调用
|
6天前
|
人工智能 自然语言处理 JavaScript
宜搭上新,DeepSeek 插件来了!
钉钉宜搭近日上线了DeepSeek插件,无需编写复杂代码,普通用户也能轻松调用强大的AI大模型能力。安装后,平台新增「AI生成」组件,支持创意内容生成、JS代码编译、工作汇报等场景,大幅提升工作效率。快来体验这一高效智能的办公方式吧!
1429 6
|
3天前
|
人工智能 自然语言处理 API
DeepSeek全尺寸模型上线阿里云百炼!
阿里云百炼平台近日上线了DeepSeek-V3、DeepSeek-R1及其蒸馏版本等六款全尺寸AI模型,参数量达671B,提供高达100万免费tokens。这些模型在数学、代码、自然语言推理等任务上表现出色,支持灵活调用和经济高效的解决方案,助力开发者和企业加速创新与数字化转型。示例代码展示了如何通过API使用DeepSeek-R1模型进行推理,用户可轻松获取思考过程和最终答案。
|
15天前
|
Linux iOS开发 MacOS
deepseek部署的详细步骤和方法,基于Ollama获取顶级推理能力!
DeepSeek基于Ollama部署教程,助你免费获取顶级推理能力。首先访问ollama.com下载并安装适用于macOS、Linux或Windows的Ollama版本。运行Ollama后,在官网搜索“deepseek”,选择适合你电脑配置的模型大小(如1.5b、7b等)。通过终端命令(如ollama run deepseek-r1:1.5b)启动模型,等待下载完成即可开始使用。退出模型时输入/bye。详细步骤如下图所示,轻松打造你的最强大脑。
9589 86
|
1月前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
阿里云与企业共筑容器供应链安全
171380 18
|
7天前
|
缓存 自然语言处理 安全
快速调用 Deepseek API!【超详细教程】
Deepseek 强大的功能,在本教程中,将指导您如何获取 DeepSeek API 密钥,并演示如何使用该密钥调用 DeepSeek API 以进行调试。
|
4天前
|
人工智能 数据可视化 Linux
【保姆级教程】3步搞定DeepSeek本地部署
DeepSeek在2025年春节期间突然爆火出圈。在目前DeepSeek的网站中,极不稳定,总是服务器繁忙,这时候本地部署就可以有效规避问题。本文以最浅显易懂的方式带读者一起完成DeepSeek-r1大模型的本地部署。

热门文章

最新文章