k1.5:性能超越 GPT-4 和 Claude 3.5!Kimi 新一代多模态推理模型

本文涉及的产品
图像搜索,7款服务类型 1个月
简介: Kimi k1.5 是月之暗面推出的多模态思考模型,具备强大的推理和多模态处理能力,支持长链思维与短链思维,性能超越GPT-4和Claude 3.5。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 多模态推理:Kimi k1.5 支持文本和视觉数据的联合推理,适用于数学、代码和视觉推理等领域。
  2. 长链与短链思维:在短链思维模式下,性能超越GPT-4和Claude 3.5;在长链思维模式下,性能达到OpenAI o1水平。
  3. 高效训练与优化:通过长上下文扩展和改进的策略优化,Kimi k1.5 实现了高效的训练和推理能力。

正文(附运行示例)

Kimi k1.5 是什么

kimi-k1.5

Kimi k1.5 是月之暗面推出的最新多模态思考模型,具备强大的推理和多模态处理能力。该模型在短链思维(short-CoT)模式下,数学、代码、视觉多模态和通用能力大幅超越了全球范围内的短思考 SOTA 模型 GPT-4o 和 Claude 3.5 Sonnet,领先幅度高达 550%。在长链思维(long-CoT)模式下,k1.5 的性能达到了 OpenAI o1 正式版的水平,成为全球范围内首个达到这一水平的多模态模型。

kimi-k1.5

Kimi k1.5 的设计和训练包含四大关键要素:长上下文扩展、改进的策略优化、简洁的框架和多模态能力。通过扩展上下文窗口至 128k 和部分展开技术,模型在推理深度和效率上显著提升。k1.5 通过 long2short 技术,将长链思维的优势迁移到短链思维模型中,进一步优化性能。

Kimi k1.5 的主要功能

  • 多模态推理能力:k1.5 能同时处理文本和视觉数据,具备联合推理能力,适用于数学、代码和视觉推理等领域。
  • 短链和长链思维:在短链思维模式下,k1.5 的数学、代码、视觉多模态和通用能力大幅超越全球领先的模型(如 GPT-4 和 Claude 3.5),领先幅度高达 550%。在长链思维模式下,其性能达到了 OpenAI o1 正式版的水平。
  • 出色的数学与代码能力:k1.5 在数学推理和编程任务中表现出色,尤其在 LaTeX 格式的数学公式输入上表现优异。
  • 高效的训练和优化:通过长上下文扩展(上下文窗口扩展至 128k)和改进的策略优化,k1.5 实现了更高效的训练,展现出规划、反思和修正的推理特性。
  • 深度推理能力:k1.5 擅长解决复杂的推理任务,如难解的数学问题、编程调试和工作难题,能帮助用户解锁更复杂的任务。

Kimi k1.5 的技术原理

  • 长上下文扩展(Long Context Scaling):Kimi k1.5 将强化学习的上下文窗口扩展到 128k,通过增加上下文长度显著提升了模型的推理能力。核心是基于部分回滚(Partial Rollout)策略,通过重用先前的轨迹片段来生成新的轨迹,避免从头生成完整轨迹的高计算成本。
  • 改进的策略优化(Improved Policy Optimization):模型采用了基于长链思维(Long-CoT)的强化学习公式,并结合在线镜像下降法(Online Mirror Descent)的变体进行策略优化。通过有效的采样策略、长度惩罚和数据配方优化,进一步提升了算法的性能。
  • 简洁的框架(Simplistic Framework):Kimi k1.5 的设计摒弃了复杂的蒙特卡洛树搜索、价值函数和过程奖励模型等技术,是通过扩展上下文长度和优化策略,实现了强大的推理能力。使模型在长上下文推理中表现出色,同时具备规划、反思和修正的能力。
  • 多模态联合训练(Multimodalities):模型在文本和视觉数据上进行了联合训练,能同时处理文本和视觉信息,具备跨模态推理的能力。
  • Long2Short 技术:Kimi k1.5 提出了一种将长链思维模型的推理能力迁移到短链思维模型的方法,包括模型融合、最短拒绝采样、DPO(成对偏好优化)和 Long2Short RL(强化学习)。

如何运行 Kimi k1.5

API 调用

开发者可以使用 Kimi API 进行调用。不过在此之前,你需要先通过申请 k1.5 的测试资格,你可以在文章的最后一节找到申请通道链接。以下是一个简单的 Python 示例:

from openai import Client

client = Client(
    api_key="YOUR_KIMI_KEY",
    base_url="https://api.moonshot.ai/v1",
)

messages = [
    {
   
        "role": "user",
        "content": "The lengths of the two legs of a right triangle are 3 cm and 4 cm respectively. Find the length of the hypotenuse of this right triangle.",
    },
]

stream = client.chat.completions.create(
    model="kimi-k1.5-preview",
    messages=messages,
    temperature=0.3,
    stream=True,
    max_tokens=8192,
)

for chunk in stream:
    if chunk.choices[0].delta:
        if chunk.choices[0].delta.content:
            print(chunk.choices[0].delta.content, end="")

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
16天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
阿里云与企业共筑容器供应链安全
171338 13
|
18天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
随着云计算和DevOps的兴起,容器技术和自动化在软件开发中扮演着愈发重要的角色,但也带来了新的安全挑战。阿里云针对这些挑战,组织了一场关于云上安全的深度访谈,邀请了内部专家穆寰、匡大虎和黄竹刚,深入探讨了容器安全与软件供应链安全的关系,分析了当前的安全隐患及应对策略,并介绍了阿里云提供的安全解决方案,包括容器镜像服务ACR、容器服务ACK、网格服务ASM等,旨在帮助企业构建涵盖整个软件开发生命周期的安全防护体系。通过加强基础设施安全性、技术创新以及倡导协同安全理念,阿里云致力于与客户共同建设更加安全可靠的软件供应链环境。
150296 32
|
26天前
|
弹性计算 人工智能 安全
对话 | ECS如何构筑企业上云的第一道安全防线
随着中小企业加速上云,数据泄露、网络攻击等安全威胁日益严重。阿里云推出深度访谈栏目,汇聚产品技术专家,探讨云上安全问题及应对策略。首期节目聚焦ECS安全性,提出三道防线:数据安全、网络安全和身份认证与权限管理,确保用户在云端的数据主权和业务稳定。此外,阿里云还推出了“ECS 99套餐”,以高性价比提供全面的安全保障,帮助中小企业安全上云。
201962 14
对话 | ECS如何构筑企业上云的第一道安全防线
|
4天前
|
机器学习/深度学习 自然语言处理 PyTorch
深入剖析Transformer架构中的多头注意力机制
多头注意力机制(Multi-Head Attention)是Transformer模型中的核心组件,通过并行运行多个独立的注意力机制,捕捉输入序列中不同子空间的语义关联。每个“头”独立处理Query、Key和Value矩阵,经过缩放点积注意力运算后,所有头的输出被拼接并通过线性层融合,最终生成更全面的表示。多头注意力不仅增强了模型对复杂依赖关系的理解,还在自然语言处理任务如机器翻译和阅读理解中表现出色。通过多头自注意力机制,模型在同一序列内部进行多角度的注意力计算,进一步提升了表达能力和泛化性能。
|
8天前
|
存储 人工智能 安全
对话|无影如何助力企业构建办公安全防护体系
阿里云无影助力企业构建办公安全防护体系
1254 10
|
10天前
|
机器学习/深度学习 自然语言处理 搜索推荐
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
|
9天前
|
人工智能 自然语言处理 程序员
通义灵码2.0全新升级,AI程序员全面开放使用
通义灵码2.0来了,成为全球首个同时上线JetBrains和VSCode的AI 程序员产品!立即下载更新最新插件使用。
1358 24
|
9天前
|
消息中间件 人工智能 运维
1月更文特别场——寻找用云高手,分享云&AI实践
我们寻找你,用云高手,欢迎分享你的真知灼见!
682 28
1月更文特别场——寻找用云高手,分享云&AI实践
|
14天前
|
人工智能 自然语言处理 API
阿里云百炼xWaytoAGI共学课DAY1 - 必须了解的企业级AI应用开发知识点
本课程旨在介绍阿里云百炼大模型平台的核心功能和应用场景,帮助开发者和技术小白快速上手,体验AI的强大能力,并探索企业级AI应用开发的可能性。
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理

热门文章

最新文章