阿里云 EMR 发布托管弹性伸缩功能,支持自动调整集群大小,最高降本60%

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 阿里云开源大数据平台 E-MapReduce 重磅推出托管弹性伸缩功能,基于 EMR 托管弹性伸缩功能,您可以指定集群的最小和最大计算限制,EMR 会持续对与集群上运行的工作负载相关的关键指标进行采样,自动调整集群大小,以获得最佳性能和资源利用率。

开源大数据平台 E-MapReduce(简称“EMR”)是云原生开源大数据平台,为客户提供简单易集成的Hadoop、Hive、Spark、StarRocks、Flink、Presto等开源大数据计算和存储引擎。

EMR on ECS是指EMR在ECS上运行的方式。EMR on ECS将EMR的大数据处理功能与ECS的容器化部署优势相结合,使得您可以更加灵活地配置和管理EMR集群,从而更好地适应复杂的数据处理和分析场景。

EMR on ECS 支持弹性伸缩,能够根据业务需求和策略自动调整计算能力(即节点数量)。EMR on ECS 近期重磅推出托管弹性伸缩功能,基于 EMR 托管弹性伸缩功能,您可以指定集群的最小和最大计算限制,EMR会持续对与集群上运行的工作负载相关的关键指标进行采样,自动调整集群大小,以获得最佳性能和资源利用率。

用例和优势

在 EMR 托管弹性伸缩发布之前,您必须提前预测工作负载或填写自定义弹性伸缩规则,这些规则取决于对服务框架(例如 Apache Spark 或 Apache Hive)的深入了解。预测工作负载或编写自定义规则比较困难且容易出错。集群资源大小不正确通常会导致稳定性风险,或者资源利用不足及成本超支。


阿里云EMR发布托管弹性伸缩功能后,您只需为集群指定最大和最小的Task节点数,阿里云EMR将自动在范围内调整集群规模,以实现最优性能与面对业务激增,EMR可以在较短时间内自动补充资源,并将新增任务调度至新的节点上在业务高峰过后,自动移除多余的资源,任务平滑的回到原有节点上,提升资源利用率。


为了对比固定集群和托管弹性伸缩集群的资源利用率效果,我们模拟了以下集群和场景:


用例

  • 集群设置:


规格

数量

master

ecs.r7.4xlarge 16 vCPU 128 GiB

1

core

ecs.r7.4xlarge 16 vCPU 128 GiB

2

task

ecs.g7.xlarge 4 vCPU 16 GiB

  • 固定集群设置:20
  • 托管弹性伸缩集群设置:
    • 最小Task节点数:0
    • 最大Task节点数:20


  • 场景设置:

场景

作业提交持续时间

作业提交间隔

作业高峰持续时间

有时间规律:固定长作业

4小时

2小时

1小时

有时间规律:固定短作业

2小时

15分钟

5分钟

夜间周期规律+白天随机提交

2小时

随机

5分钟

无时间规律

随机

随机

随机


  • 效果对比:

相比于固定集群配置,托管弹性伸缩在各类场景下都有较大的资源利用率提升。

资源利用率

未开启弹性

托管伸缩

有时间规律:固定长作业

44.74%

87.85%

有时间规律:固定短作业

35.64%

74.58%

夜间周期规律+白天随机提交

27.08%

76.19%

无时间规律

39.18%

84.66%


以下大盘显示了 EMR 托管弹性伸缩如何根据集群负载调整集群大小,在高峰期扩大集群,在空闲时缩小集群。与固定大小的集群相比,在用例中启用托管弹性伸缩,可将集群成本降低 60%。


优势

相比于自定义伸缩,托管弹性伸缩在性能和配置便捷度上都有较大的提升

配置 EMR 托管扩展

配置 EMR 托管扩展非常简单。只需启用 EMR 托管扩展并设置Task节点数量的最小和最大限制。您可以在正在运行的集群上或在创建集群时启用托管扩展。有关更多信息,请参阅

如何在EMR控制台配置弹性伸缩_开源大数据平台 E-MapReduce(EMR)-阿里云帮助中心


节点分配策略

EMR 托管弹性伸缩让您控制集群可扩展到的最小容量和最大容量。可控制这些容量的参数包括:

  • 最大Task节点数
  • 最小Task节点数
  • 最大按量Task节点数最大按量Task节点数是用来调节抢占式实例和按量实例的分配
  • 仅扩展按量Task节点最大按量Task节点数=最大Task节点数。
  • 仅扩展抢占式实例Task节点最大按量Task节点数=最小Task节点数。


如果您在使用过程中遇到任何疑问,欢迎扫描下方二维码加入EMR用户钉钉群进行咨询。

相关文章
|
3月前
|
弹性计算 人工智能 Serverless
阿里云ACK One:注册集群云上节点池(CPU/GPU)自动弹性伸缩,助力企业业务高效扩展
在当今数字化时代,企业业务的快速增长对IT基础设施提出了更高要求。然而,传统IDC数据中心却在业务存在扩容慢、缩容难等问题。为此,阿里云推出ACK One注册集群架构,通过云上节点池(CPU/GPU)自动弹性伸缩等特性,为企业带来全新突破。
|
4月前
|
SQL 存储 缓存
阿里云EMR StarRocks X Paimon创建 Streaming Lakehouse
本文介绍了阿里云EMR StarRocks在数据湖分析领域的应用,涵盖StarRocks的数据湖能力、如何构建基于Paimon的实时湖仓、StarRocks与Paimon的最新进展及未来规划。文章强调了StarRocks在极速统一、简单易用方面的优势,以及在数据湖分析加速、湖仓分层建模、冷热融合及全链路ETL等场景的应用。
360 8
阿里云EMR StarRocks X Paimon创建 Streaming Lakehouse
|
4月前
|
SQL 存储 缓存
降本60% ,阿里云 EMR StarRocks 全新发布存算分离版本
阿里云 EMR Serverless StarRocks 现已推出全新存算分离版本,该版本不仅基于开源 StarRocks 进行了全面优化,实现了存储与计算解耦架构,还在性能、弹性伸缩以及多计算组隔离能力方面取得了显著进展。
477 6
|
4月前
|
SQL 存储 缓存
阿里云EMR StarRocks X Paimon创建 Streaming Lakehouse
讲师焦明烨介绍了StarRocks的数据湖能力,如何使用阿里云EMR StarRocks构建基于Paimon的极速实时湖仓,StarRocks与Paimon的最新进展及未来规划。
173 3
|
6月前
|
分布式计算 大数据 MaxCompute
EMR Remote Shuffle Service实践问题之阿里云RSS的开源计划内容如何解决
EMR Remote Shuffle Service实践问题之阿里云RSS的开源计划内容如何解决
|
6月前
|
分布式计算 测试技术 调度
EMR Remote Shuffle Service实践问题之集群中落地阿里云RSS如何解决
EMR Remote Shuffle Service实践问题之集群中落地阿里云RSS如何解决
|
5月前
|
SQL 分布式计算 Serverless
阿里云 EMR Serverless Spark 版正式开启商业化
阿里云 EMR Serverless Spark 版正式开启商业化,内置 Fusion Engine,100% 兼容开源 Spark 编程接口,相比于开源 Spark 性能提升300%;提供 Notebook 及 SQL 开发、调试、发布、调度、监控诊断等一站式数据开发体验!
205 3
阿里云 EMR Serverless Spark 版正式开启商业化
|
5月前
|
SQL 存储 NoSQL
阿里云 EMR StarRocks 在七猫的应用和实践
本文整理自七猫资深大数据架构师蒋乾老师在 《阿里云 x StarRocks:极速湖仓第二季—上海站》的分享。
352 2
|
6月前
|
存储 分布式计算 大数据
大数据革新在即,阿里云EMR如何布局DeltaLake引领行业潮流?
【8月更文挑战第26天】大数据时代,实时处理与分析能力对企业至关重要。Delta Lake 作为高性能、可靠且支持 ACID 事务的开源存储层,已成为业界焦点。阿里云 EMR 深度布局 Delta Lake,计划深化集成、强化数据安全、优化实时性能,并加强生态建设与社区贡献。通过与 Spark 的无缝对接及持续的技术创新,阿里云 EMR 致力于提供更高效、安全的数据湖解决方案,引领大数据处理领域的发展新方向。
65 3
|
6月前
|
存储 分布式计算 监控
揭秘阿里云EMR:如何巧妙降低你的数据湖成本,让大数据不再昂贵?
【8月更文挑战第26天】阿里云EMR是一种高效的大数据处理服务,助力企业优化数据湖的成本效益。它提供弹性计算资源,支持根据需求调整规模;兼容并优化了Hadoop、Spark等开源工具,提升性能同时降低资源消耗。借助DataWorks及Data Lake Formation等工具,EMR简化了数据湖构建与管理流程,实现了数据的统一化治理。此外,EMR还支持OSS、Table Store等多种存储选项,并配备监控优化工具,确保数据处理流程高效稳定。通过这些措施,EMR帮助企业显著降低了数据处理和存储成本。
224 3

热门文章

最新文章