JoyCaption:开源的图像转提示词生成工具,支持多种风格和场景,性能与 GPT4o 相当

本文涉及的产品
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频资源包5000点
简介: JoyCaption 是一款开源的图像提示词生成工具,支持多种生成模式和灵活的提示选项,适用于社交媒体、图像标注、内容创作等场景,帮助用户快速生成高质量图像描述。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:支持多种图像描述生成模式,包括描述性字幕、稳定扩散提示、MidJourney 提示等。
  2. 技术:基于视觉语言模型(VLM),提供与 GPT4o 相当的图像描述生成性能。
  3. 应用:适用于社交媒体、图像标注、内容创作、视觉障碍辅助等多个场景。

正文(附运行示例)

JoyCaption 是什么

joycaption

JoyCaption 是一款开源的图像提示词生成工具,专为训练扩散模型而设计。它能够为输入的图像生成详细的描述性字幕,涵盖广泛的图像风格、内容、种族、性别和取向,最小化过滤理解世界的各个方面,但不支持非法内容。

JoyCaption 的开发旨在填补社区在图像描述生成方面的空白,提供与 GPT4o 相当的性能,且保持免费和开放。用户可以通过多种模式和提示生成描述性字幕,适用于不同的应用场景,如社交媒体帖子、产品列表等。

JoyCaption 的主要功能

  • 图像描述生成:为输入的图像自动生成详细的描述性字幕,帮助用户理解图像内容。
  • 多种生成模式:提供描述性字幕、稳定扩散提示、MidJourney 提示、Booru 标签列表等多种生成模式,满足不同场景的需求。
  • 灵活的提示选项:用户可以通过附加指令指导字幕生成,例如指定在字幕中使用特定的名字或触发词,获得更符合需求的字幕。
  • 支持 SFW 和 NSFW 内容:对 SFW 和 NSFW 内容都有平等的覆盖,不会用模糊的描述规避审查。

如何运行 JoyCaption

1. 登录

访问 JoyCaption 的在线 Demo 体验地址:https://huggingface.co/spaces/fancyfeast/joy-caption

2. 上传图片

在 JoyCaption 的界面中,上传想要分析的图片。可以通过拖放图片到指定区域或点击上传按钮完成。

3. 生成提示词

点击“caption”按钮,JoyCaption 将开始分析图片,并在界面的右侧显示 AI 反推出的提示词。

4. 使用提示词

将生成的提示词用于 AI 绘画模型(如 Flux)中,生成新的图像或进行进一步的创作。

5. 本地运行示例

以下是一个使用 JoyCaption 的 Python 代码示例:

import torch
from PIL import Image
from transformers import AutoProcessor, LlavaForConditionalGeneration

IMAGE_PATH = "image.jpg"
PROMPT = "Write a long descriptive caption for this image in a formal tone."
MODEL_NAME = "fancyfeast/llama-joycaption-alpha-two-hf-llava"

# Load JoyCaption
processor = AutoProcessor.from_pretrained(MODEL_NAME)
llava_model = LlavaForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype="bfloat16", device_map=0)
llava_model.eval()

with torch.no_grad():
    # Load image
    image = Image.open(IMAGE_PATH)

    # Build the conversation
    convo = [
        {
   "role": "system", "content": "You are a helpful image captioner."},
        {
   "role": "user", "content": PROMPT},
    ]

    # Format the conversation
    convo_string = processor.apply_chat_template(convo, tokenize=False, add_generation_prompt=True)
    assert isinstance(convo_string, str)

    # Process the inputs
    inputs = processor(text=[convo_string], images=[image], return_tensors="pt").to('cuda')
    inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)

    # Generate the captions
    generate_ids = llava_model.generate(
        **inputs,
        max_new_tokens=300,
        do_sample=True,
        suppress_tokens=None,
        use_cache=True,
        temperature=0.6,
        top_k=None,
        top_p=0.9,
    )[0]

    # Trim off the prompt
    generate_ids = generate_ids[inputs['input_ids'].shape[1]:]

    # Decode the caption
    caption = processor.tokenizer.decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
    caption = caption.strip()
    print(caption)

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
6天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
随着云计算和DevOps的兴起,容器技术和自动化在软件开发中扮演着愈发重要的角色,但也带来了新的安全挑战。阿里云针对这些挑战,组织了一场关于云上安全的深度访谈,邀请了内部专家穆寰、匡大虎和黄竹刚,深入探讨了容器安全与软件供应链安全的关系,分析了当前的安全隐患及应对策略,并介绍了阿里云提供的安全解决方案,包括容器镜像服务ACR、容器服务ACK、网格服务ASM等,旨在帮助企业构建涵盖整个软件开发生命周期的安全防护体系。通过加强基础设施安全性、技术创新以及倡导协同安全理念,阿里云致力于与客户共同建设更加安全可靠的软件供应链环境。
127587 10
|
14天前
|
弹性计算 人工智能 安全
对话 | ECS如何构筑企业上云的第一道安全防线
随着中小企业加速上云,数据泄露、网络攻击等安全威胁日益严重。阿里云推出深度访谈栏目,汇聚产品技术专家,探讨云上安全问题及应对策略。首期节目聚焦ECS安全性,提出三道防线:数据安全、网络安全和身份认证与权限管理,确保用户在云端的数据主权和业务稳定。此外,阿里云还推出了“ECS 99套餐”,以高性价比提供全面的安全保障,帮助中小企业安全上云。
201925 14
对话 | ECS如何构筑企业上云的第一道安全防线
|
3天前
|
供应链 监控 安全
|
6天前
|
SQL 安全 前端开发
预编译为什么能防止SQL注入?
SQL注入是Web应用中常见的安全威胁,攻击者通过构造恶意输入执行未授权的SQL命令。预编译语句(Prepared Statements)是一种有效防御手段,它将SQL代码与数据分离,确保用户输入不会被解释为SQL代码的一部分。本文详细介绍了SQL注入的危害、预编译语句的工作机制,并结合实际案例和多语言代码示例,展示了如何使用预编译语句防止SQL注入,强调了其在提升安全性和性能方面的重要性。
|
9天前
|
搜索推荐 物联网 PyTorch
Qwen2.5-7B-Instruct Lora 微调
本教程介绍如何基于Transformers和PEFT框架对Qwen2.5-7B-Instruct模型进行LoRA微调。
417 34
Qwen2.5-7B-Instruct Lora 微调
|
1月前
|
人工智能 自然语言处理 前端开发
从0开始打造一款APP:前端+搭建本机服务,定制暖冬卫衣先到先得
通义灵码携手科技博主@玺哥超carry 打造全网第一个完整的、面向普通人的自然语言编程教程。完全使用 AI,再配合简单易懂的方法,只要你会打字,就能真正做出一个完整的应用。
9940 29
|
3天前
|
机器学习/深度学习 存储 人工智能
【科普向】我们所说的AI模型训练到底在训练什么?
人工智能(AI)模型训练类似于厨师通过反复实践来掌握烹饪技巧。它通过大量数据输入,自动优化内部参数(如神经网络中的权重和偏置),以最小化预测误差或损失函数,使模型在面对新数据时更加准确。训练过程包括前向传播、计算损失、反向传播和更新权重等步骤,最终生成权重文件保存模型参数,用于后续的应用和部署。理解生物神经网络的工作原理为人工神经网络的设计提供了灵感,后者广泛应用于图像识别、自然语言处理等领域。
|
2天前
|
人工智能 算法 搜索推荐
阿里云百炼xWaytoAGI共学课开课:手把手学AI,大咖带你从零搭建AI应用
阿里云百炼xWaytoAGI共学课开课啦。大咖带你从零搭建AI应用,玩转阿里云百炼大模型平台。3天课程,涵盖企业级文本知识库案例、多模态交互应用实操等,适合有开发经验的企业或独立开发者。直播时间:2025年1月7日-9日 20:00,地点:阿里云/WaytoAGI微信视频号。参与课程可赢取定制保温杯、雨伞及磁吸充电宝等奖品。欢迎加入钉钉共学群(群号:101765012406),与百万开发者共学、共享、共实践!
|
15天前
|
机器学习/深度学习 人工智能 安全
通义视觉推理大模型QVQ-72B-preview重磅上线
Qwen团队推出了新成员QVQ-72B-preview,这是一个专注于提升视觉推理能力的实验性研究模型。提升了视觉表示的效率和准确性。它在多模态评测集如MMMU、MathVista和MathVision上表现出色,尤其在数学推理任务中取得了显著进步。尽管如此,该模型仍存在一些局限性,仍在学习和完善中。

热门文章

最新文章

下一篇
开通oss服务