TITAN:哈佛医学院推出多模态全切片病理基础模型,支持病理报告生成、跨模态检索

本文涉及的产品
图像搜索,7款服务类型 1个月
简介: TITAN 是哈佛医学院研究团队开发的多模态全切片病理基础模型,通过视觉自监督学习和视觉-语言对齐预训练,能够在无需微调或临床标签的情况下提取通用切片表示,生成病理报告。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:TITAN 能够生成病理报告,支持跨模态检索和罕见癌症检索。
  2. 技术:通过视觉自监督学习和视觉-语言对齐预训练,提取通用切片表示。
  3. 应用:适用于资源有限的临床场景,减少误诊和观察者间差异。

正文(附运行示例)

TITAN 是什么

公众号: 蚝油菜花 - TITAN

TITAN 是哈佛医学院研究团队开发的多模态全切片病理基础模型,通过视觉自监督学习和视觉-语言对齐预训练,能够在无需微调或临床标签的情况下提取通用的切片表示,生成病理报告。它使用了 335,645 张全切片图像(WSIs)以及相应的病理报告,结合了 423,122 个由多模态生成型 AI 协作者生成的合成字幕。

TITAN 在多种临床任务中表现出色,包括线性探测、少样本和零样本分类、罕见癌症检索、跨模态检索和病理报告生成。

TITAN 的主要功能

  • 生成病理报告:TITAN 能够生成在资源有限的临床场景下,如罕见疾病检索和癌症预后,具有泛化能力的病理报告。
  • 多任务性能:在多种临床任务上,如线性探测、少样本和零样本分类、罕见癌症检索和跨模态检索,以及病理报告生成等方面,TITAN 均展现出优越的性能。
  • 提取通用切片表示:TITAN 能够提取适用于多种病理任务的通用切片表示,为病理学研究和临床诊断提供有力工具。
  • 检索相似切片和报告:TITAN 在罕见癌症检索和交叉模态检索任务中表现出色,能有效检索相似切片和报告,辅助临床诊断决策。
  • 减少误诊和观察者间差异:TITAN 在临床诊断工作流程中有重要潜力,可协助病理学家和肿瘤学家检索相似切片和报告,减少误诊和观察者间差异。

TITAN 的技术原理

  • 自监督学习和视觉-语言对齐:TITAN 通过视觉自监督学习和视觉-语言对齐进行预训练,能无需任何微调或临床标签,提取通用目的的切片表示。
  • 预训练策略:TITAN 的预训练包含三个不同的阶段,确保最终生成的切片层面表示能够借助视觉和语言监督信号,同时捕捉 ROI 层面以及 WSIs 层面的组织形态学语义。
  • 模型设计:TITAN 基于视觉 Transformer(ViT)架构,切片编码器使用预先提取的图像块特征,按二维特征网格排列以保留空间上下文。通过将图像块尺寸增大,有效减少输入序列长度。在处理全切片图像尺寸和形状不规则问题上,采用区域裁剪和数据增强方法。
  • 语言能力赋予:通过对比标题生成器(CoCa)在第二、三阶段的预训练,将切片表示分别与合成标题及病理报告对齐,微调切片编码器、文本编码器和多模态解码器,使模型具备语言能力,包括生成病理报告、零样本分类和跨模态检索等。

如何运行 TITAN

1. 获取访问权限

首先,从 Huggingface 模型页面请求访问模型权重(CONCHv1.5 和 TITAN-preview):https://huggingface.co/MahmoodLab/TITAN

2. 下载权重并创建模型

通过 Huggingface Hub 进行身份验证后,可以自动下载 TITAN-preview 和 CONCH v1.5 的权重。

from huggingface_hub import login
from transformers import AutoModel 

login()  # 使用你的 User Access Token 登录

titan = AutoModel.from_pretrained('MahmoodLab/TITAN', trust_remote_code=True)
conch, eval_transform = titan.return_conch()

3. 运行推理

你可以直接使用 TITAN-preview 进行切片级别的特征提取。

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)

# 加载 TCGA 样本数据
from huggingface_hub import hf_hub_download
demo_h5_path = hf_hub_download(
    "MahmoodLab/TITAN", 
    filename="TCGA_demo_features/TCGA-PC-A5DK-01Z-00-DX1.C2D3BC09-411F-46CF-811B-FDBA7C2A295B.h5",
)
file = h5py.File(demo_h5_path, 'r')
features = torch.from_numpy(file['features'][:])
coords = torch.from_numpy(file['coords'][:])
patch_size_lv0 = file['coords'].attrs['patch_size_level0']

# 提取切片嵌入
with torch.autocast('cuda', torch.float16), torch.inference_mode():
    features = features.to(device)
    coords = coords.to(device)
    slide_embedding = model.encode_slide_from_patch_features(features, coords, patch_size_lv0)

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
8月前
|
人工智能 vr&ar 图形学
开源单图生成3D模型TripoSR的局限性分析
【2月更文挑战第25天】开源单图生成3D模型TripoSR的局限性分析
354 6
开源单图生成3D模型TripoSR的局限性分析
|
8月前
|
自然语言处理 测试技术 计算机视觉
ICLR 2024:谁说大象不能起舞! 重编程大语言模型实现跨模态交互的时序预测
【4月更文挑战第22天】**TIME-LLM** 论文提出将大型语言模型重编程用于时序预测,克服数据稀疏性问题。通过文本原型重编码和Prompt-as-Prefix策略,使LLMs能处理连续时序数据。在多基准测试中超越专业模型,尤其在少量样本场景下效果突出。但面临跨领域泛化、模型调整复杂性和计算资源需求的挑战。[论文链接](https://openreview.net/pdf?id=Unb5CVPtae)
120 2
|
4天前
|
人工智能 JSON API
LongDocURL:中科院联合阿里推出多模态长文档理解基准数据集,用于评估模型对复杂文档分析与推理的能力
LongDocURL 是由中科院与淘天集团联合推出的多模态长文档理解基准数据集,涵盖 2,325 个问答对,支持复杂文档的理解、推理和定位任务。
118 77
LongDocURL:中科院联合阿里推出多模态长文档理解基准数据集,用于评估模型对复杂文档分析与推理的能力
|
2天前
|
机器学习/深度学习 人工智能 算法
RLCM:康奈尔大学推出文本到图像一致性模型优化框架,支持快速生成与任务特定奖励优化
RLCM 是康奈尔大学推出的基于强化学习的文本到图像生成模型优化框架,支持快速训练与推理,能够根据任务特定奖励函数生成高质量图像。
22 11
RLCM:康奈尔大学推出文本到图像一致性模型优化框架,支持快速生成与任务特定奖励优化
|
7天前
|
人工智能 测试技术
VideoPhy:UCLA 和谷歌联合推出评估视频生成模型物理模拟能力的评估工具,衡量模型生成的视频是否遵循现实世界的物理规则
VideoPhy 是 UCLA 和谷歌联合推出的首个评估视频生成模型物理常识能力的基准测试,旨在衡量模型生成的视频是否遵循现实世界的物理规则。
23 9
VideoPhy:UCLA 和谷歌联合推出评估视频生成模型物理模拟能力的评估工具,衡量模型生成的视频是否遵循现实世界的物理规则
|
14天前
|
数据采集 人工智能 自动驾驶
VSI-Bench:李飞飞谢赛宁团队推出视觉空间智能基准测试集,旨在评估多模态大语言模型在空间认知和理解方面的能力
VSI-Bench是由李飞飞和谢赛宁团队推出的视觉空间智能基准测试集,旨在评估多模态大型语言模型(MLLMs)在空间认知和理解方面的能力。该基准测试集包含超过5000个问题-答案对,覆盖近290个真实室内场景视频,涉及多种环境,能够系统地测试和提高MLLMs在视觉空间智能方面的表现。
57 16
VSI-Bench:李飞飞谢赛宁团队推出视觉空间智能基准测试集,旨在评估多模态大语言模型在空间认知和理解方面的能力
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
NeurIPS 2024:真实世界复杂任务,全新基准GTA助力大模型工具调用能力评测
在NeurIPS 2024会议上,GTA(General Tool Agents Benchmark)基准测试被提出,旨在评估大型语言模型(LLM)在真实世界复杂任务中的工具调用能力。GTA采用真实用户查询、真实部署工具和多模态输入,全面评估LLM的推理和执行能力。结果显示,现有LLM在真实世界任务中仍面临巨大挑战,为未来研究提供了重要方向。
44 13
|
30天前
|
传感器 数据采集 自动驾驶
世界模型新突破!极佳科技提出DriveDreamer4D,首次利用世界模型增强4D驾驶场景重建效果
极佳科技提出DriveDreamer4D,一种利用世界模型先验知识增强4D驾驶场景重建的方法。它通过生成符合交通规则的新轨迹视频,显著提升了自动驾驶系统的测试数据质量和时空一致性,相较于现有方法在多项指标上实现显著改进,为自动驾驶技术发展带来新机遇。
68 21
|
4月前
|
编解码 定位技术 计算机视觉
多模态LLM视觉推理能力堪忧,浙大领衔用GPT-4合成数据构建多模态基准
【9月更文挑战第2天】浙江大学领衔的研究团队针对多模态大型模型(MLLM)在抽象图像理解和视觉推理上的不足,提出了一种利用GPT-4合成数据构建多模态基准的方法。该研究通过合成数据提高了MLLM处理图表、文档等复杂图像的能力,并构建了一个包含11,193条指令的基准,涵盖8种视觉场景。实验表明,这种方法能显著提升模型性能,但依赖闭源模型和高计算成本是其局限。论文详细内容见:https://arxiv.org/pdf/2407.07053
98 10
|
8月前
|
人工智能
MIT等首次深度研究集成LLM预测能力:可媲美人类群体准确率
【4月更文挑战第16天】研究人员集成12个大型语言模型(LLM)组成“硅基群体”,在预测比赛中与925名人类预测者对比。研究发现,LLM群体的预测准确性与人类群体无显著差异,且通过集成可抵消个体模型的偏差,提高预测准确。GPT-4和Claude 2等模型结合人类预测后,准确度提升17%至28%。然而,个别LLM预测精度不一,模型选择和校准度是提升预测性能的关键,同时LLM在时间跨度和现实场景适应性方面仍有挑战。
113 6
MIT等首次深度研究集成LLM预测能力:可媲美人类群体准确率

热门文章

最新文章