[JavaEE]———进程、进程的数据结构、进程的调度

简介: 操作系统,进程任务,PCB,PID,内存指针,文件描述符表,进程的调度,并发编程,状态,优先级,记账信息,上下文

阿华代码,不是逆风,就是我疯,你们的点赞收藏是我前进最大的动力!!希望本文内容能帮到你!

目录

一:操作系统

1:操作系统的定位和功能

2:多任务操作系统

3:单任务操作系统

二:进程、任务

1:进程概念

2:进程是“系统分配资源”的基本单位

3:操作系统的进程管理

(0)PCB

(1)描述PCB

(2)组织PCB

(3)实例

(4)PID

(5)内存指针

(6)文件描述符表

三:进程的调度

1:分时复用,并发执行

2:并行执行

3:并发编程

4:状态

(1):就绪状态

(2):阻塞状态

5:优先级

6:记账信息

7:上下文


引入:软件工程的本质,针对“复杂程度”的管理,管理的本质就是“抽象和封装”

一:操作系统

1:操作系统的定位和功能

(1)管理各种硬件设备

(2)给软件提供稳定的运行环境

2:多任务操作系统

顾名思义,在同一时刻,后台可以有多个应用程序,比如我可以开着qq,微信聊天,听着网易云,时不时刷刷知乎........

3:单任务操作系统

一个时刻只能有一个程序,像以前市面上的山寨机,多是这种操作系统,

二:进程、任务

1:进程概念

正在运行的程序就叫做进程或者任务

2:进程是“系统分配资源”的基本单位

每个任务在执行的过程的当中,都需要消耗一定的硬件资源。换而言之(等价说法),进程在运行过程中,都需要给进程分配系统资源。

3:操作系统的进程管理

简述(具体过程比下文更加复杂):

(0)PCB

①PCB:表示进程信息的结构体进程控制块(Process Control Block)简称为PCB,这个概念是操作系统中通用的概念

在Linux上PCB具体表现为一个叫做 struck task_struck{......}这样的一个结构体。

②类/结构体:用来描述一些实体的属性的集合

(1)描述PCB

通过PCB来描述实体的属性

(2)组织PCB

通过数据结构,把这些进程控制块串在一起

在Linux中,通常用链表来把若干个进程控制块串联在一起

(3)实例

在我们打开任务管理器的时候会显示很多进程,其实就是系统在遍历链表后,打印链表上节点的信息。

如果运行一个新的程序,系统就会多一个进程,就需要构造一个新的PCB,并把这个PCB加入到链表的节点中去

如果退出一个进程,就把对应的PCB在链表上删除,并且回收掉相关的PCB的资源

(4)PID

PID是PCB的核心属性之一

PID是进程的身份标识,具体表现形式为,一个整数,同一台机器,同一时刻,每一个进程都有一个不同的整数数字标号,后续如果要对进程进行一些操作,我们就可以根据这个数字来区分进程

比如:当我们要结束一个进程的时候,选中进程,点击结束任务,任务管理器获取到这个进程的PID,然后调用一个系统API,把这个pid作为参数传入,最后完成杀死进程的一个操作

(5)内存指针

内存指针就是描述进程使用内存资源的详细情况。

进程在运行起来之前,需要向系统申请一块内存空间,系统同意后给进程分配内存资源,进程才可以运行,

进程运行起来之后,也需要和“数据”“指令”进行配合,所以进程需要知道哪里存的是“数据”,哪里存的是“指令”

(注:数据和指令也都是需要存到内存当中的,在进程跑起来之前,数据和内存就需要提起加载到内存当中去)

打个比方:进程现在要去住旅馆,像旅馆馆主申请房间,馆主同意后分配给你一个房间,你就只能在这个房间中活动,

(6)文件描述符表

文件描述符表是用来描述进程所涉及到的硬盘资源

存储器=内存+外存,外存包括但不限于(硬盘,光碟,u盘,软盘等),因为现在硬盘居多,所以我们说的外存默认都指硬盘。

进程想要修改文件,那么就得先“打开文件”——:在文件描述符表上分配一个表项,构造一个结构体,来描述这个文件的实体信息

三:进程的调度

背景描述:进程在运行的时候需要消耗占用一定的CPU资源,而在同一台机器同一时刻有5个进程需要“同时”运行,那cpu是如何处理的呢?

1:分时复用,并发执行

打个比方——只有一个单核CPU(一个舞台),现在需要5个进程同时运行(上舞台表演),(同一时刻,同意舞台只能有一个进程)怎么办,那就只能压缩每个进程表演的时间,(进程ABCDE超速轮回切换上台),人是感知不到这个切换的过程的(因为cpu的频率足够高),这样肉眼就会误以为是五个进程在“同时运行”。

当然也有极端情况,进程数量太多了,cpu处理不过来,表现出来就是系统卡顿,鼠标转圈。

2:并行执行

同样打比方——现在我们有一个四核cpu,8个进程,同样要让这些进程满足同一时刻,同一舞台,只能有一个进程表演,要达到肉眼难以区分的切换速度,这个过程就要复杂许多了

但是这里任然满足“分时复用,并发执行”这一概念,在此基础上多了一条“并行执行”(因为舞台数多了嘛)

3:并发编程

我们现在计算机的执行过程是 “并发执行”+“并行执行”同时存在的,所以我们就把这两者结合统一叫成“并发编程”

但是两个进程如何运行需要看系统如何调度,这里涉及到系统调度器模块的实现(略)

4:状态

状态是描述进程是否能被cpu调用执行

(1):就绪状态

进程此时空闲,整装待发,操作系统知乎一声,进程直接就上cpu那开始干活了

(2):阻塞状态

也可以理解成进程正在等待,比如用户调用Scanner,进程需要等待用户输入东西,在这个过程中,进程是不方便被操作系统调用去干别的事的,这就是阻塞状态。

5:优先级

我们在前面说了,舞台只有4个,但是我有很多个进程,那么谁先上呢?这里就涉及到一个优先级的问题了,看那个进程比较重要,由操作系统来进行统一调配。

比如:我在打王者农药,同时又挂着微信,此时有人给我发消息,系统肯定是先紧着农药,消息晚点收也无所谓~~~~这就是优先级

6:记账信息

这个概念也很好理解, image.gif 编辑,这个红字中怎么判断,哪个进程重要呢?这就涉及到了记账信息。

我们还是用进程舞台演出的例子哈,在一个轮次中,每个进程表演的时间不同(即进程在CPU中占用的时间比例不同),我们统计这一轮中进程的时间占比,作为记账信息,在下一轮中操作系统根据这个信息来对新一轮的进程进行优先级安排。

7:上下文

也是pcb(进程控制模块)中的一种数据结构,支撑进程调度的重要属性之一,相当于单机游戏中的存档和读档。

1:存档

在进程被cpu调度之前,把普通寄存器当中的信息,单独保存到一个地方(一般是内存的关键寄存器中),不要让这些信息被覆盖或者消失。

2:读档:

在下一次进程被cpu调度之前,把关键寄存器当中的信息给恢复加载到普通寄存器当中

注:无论存档还是读档都是在cpu调度进程之前

相关文章
|
1月前
|
算法 调度 UED
深入理解操作系统:进程调度与优先级队列
【10月更文挑战第31天】在计算机科学的广阔天地中,操作系统扮演着枢纽的角色,它不仅管理着硬件资源,还为应用程序提供了运行的环境。本文将深入浅出地探讨操作系统的核心概念之一——进程调度,以及如何通过优先级队列来优化资源分配。我们将从基础理论出发,逐步过渡到实际应用,最终以代码示例巩固知识点,旨在为读者揭开操作系统高效管理的神秘面纱。
|
24天前
|
存储 算法 调度
深入理解操作系统:进程调度的奥秘
在数字世界的心脏跳动着的是操作系统,它如同一个无形的指挥官,协调着每一个程序和进程。本文将揭开操作系统中进程调度的神秘面纱,带你领略时间片轮转、优先级调度等策略背后的智慧。从理论到实践,我们将一起探索如何通过代码示例来模拟简单的进程调度,从而更深刻地理解这一核心机制。准备好跟随我的步伐,一起走进操作系统的世界吧!
|
1月前
|
消息中间件 算法 调度
深入理解操作系统:进程管理与调度
操作系统是计算机系统的核心,负责管理和控制硬件资源、提供用户接口以及执行程序。其中,进程管理是操作系统的重要组成部分,它涉及到进程的创建、调度、同步和通信等方面。本文将深入探讨进程管理的基本概念、进程调度算法以及进程间的同步和通信机制。通过本文的学习,读者将能够更好地理解操作系统的工作原理,并掌握进程管理的基本技能。
48 11
|
1月前
|
算法 调度 UED
深入理解操作系统:进程管理与调度策略
操作系统作为计算机系统的核心,其进程管理和调度策略对于系统性能和用户体验至关重要。本文将通过直观的代码示例和浅显易懂的语言,带领读者了解操作系统如何有效管理进程以及常见的进程调度算法。我们将从进程的基本概念出发,逐步深入到进程状态、进程控制块(PCB)的作用,最后探讨不同的调度算法及其对系统性能的影响。无论您是初学者还是有一定基础的开发者,都能从中获得有价值的信息。
|
29天前
|
负载均衡 算法 调度
深入理解操作系统:进程管理与调度
在数字世界的心脏,操作系统扮演着至关重要的角色。它如同一位精明的指挥家,协调着硬件资源和软件需求之间的和谐乐章。本文将带你走进操作系统的核心,探索进程管理的艺术和调度策略的智慧。你将了解到进程是如何创建、执行和消亡的,以及操作系统如何巧妙地决定哪个进程应该在何时获得CPU的青睐。让我们一起揭开操作系统神秘的面纱,发现那些隐藏在日常计算背后的精妙机制。
|
1月前
|
调度 开发者
深入理解操作系统之进程调度
在计算机科学领域,操作系统是核心的一环,它管理着计算机硬件资源,并提供接口供上层软件运行。本文将通过深入浅出的方式,探讨操作系统中至关重要的一个概念——进程调度。我们将从基础理论出发,逐步展开讲解进程调度的原理和实现,并配以实际代码示例,旨在帮助读者更好地理解和掌握这一主题。文章不仅适合初学者建立基础,也适合有一定基础的开发者深化理解。
|
1月前
|
算法 调度 UED
深入理解操作系统:进程管理与调度策略
【10月更文挑战第40天】在数字世界中,操作系统是连接硬件与软件的桥梁,它管理着计算机资源和提供用户服务。本文将深入探讨操作系统中的进程管理与调度策略,揭示它们如何协调多任务运行,保证系统高效稳定运作。通过代码示例,我们将展示进程创建、执行以及调度算法的实际应用,帮助读者构建对操作系统核心机制的清晰认识。
|
1月前
|
算法 调度 UED
深入理解操作系统:进程管理与调度策略
【10月更文挑战第34天】本文旨在探讨操作系统中至关重要的一环——进程管理及其调度策略。我们将从基础概念入手,逐步揭示进程的生命周期、状态转换以及调度算法的核心原理。文章将通过浅显易懂的语言和具体实例,引导读者理解操作系统如何高效地管理和调度进程,保证系统资源的合理分配和利用。无论你是初学者还是有一定经验的开发者,这篇文章都能为你提供新的视角和深入的理解。
45 3
|
1月前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
71 4
|
1月前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####

相关实验场景

更多