3D-Speaker:阿里通义开源的多模态说话人识别项目,支持说话人识别、语种识别、多模态识别、说话人重叠检测和日志记录

简介: 3D-Speaker是阿里巴巴通义实验室推出的多模态说话人识别开源项目,结合声学、语义和视觉信息,提供高精度的说话人识别和语种识别功能。项目包含工业级模型、训练和推理代码,以及大规模多设备、多距离、多方言的数据集,适用于多种应用场景。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:支持说话人日志、说话人识别、语种识别、多模态识别和重叠说话人检测。
  2. 技术:结合声学、语义和视觉信息,采用EEND网络和无监督聚类技术。
  3. 应用:适用于会议记录、法庭记录、广播电视制作、电话客服和安全监控等场景。

正文(附运行示例)

3D-Speaker 是什么

公众号: 蚝油菜花 - 3D-Speaker

3D-Speaker是阿里巴巴通义实验室语音团队推出的多模态开源项目,旨在通过结合声学、语义和视觉信息,实现高精度的说话人识别和语种识别。项目提供了工业级模型、训练和推理代码,以及大规模多设备、多距离、多方言的数据集,支持高挑战性的语音研究。

3D-Speaker的最新更新增强了多说话人日志功能,提升了识别效率和准确性,适用于大规模对话数据的高效处理。

3D-Speaker 的主要功能

  • 说话人日志:将音频划分为属于不同说话人的多个段落,识别出每个说话人的开始和结束时间。
  • 说话人识别:确定音频中说话人的身份。
  • 语种识别:识别音频中说话人所使用的语言。
  • 多模态识别:结合声学、语义、视觉信息,增强识别能力,尤其是在复杂声学环境中。
  • 重叠说话人检测:能识别出音频中任意说话人重叠的区域。

3D-Speaker 的技术原理

  • 声学信息处理:声学编码器提取包含说话人信息的声学特征,应用数据增强算法提高特征提取的鲁棒性。
  • 视觉信息融合:分析和提取人物脸部活动特征,基于视觉-音频多模态检测模块识别出当前画面中正在说话的人物信息。
  • 语义信息融合:结合语义信息,将说话人日志任务转化为对识别的文本内容进行说话人区分,使用基于Bert模型的对话预测和说话人转换预测模块提取语义中的说话人信息。
  • 端到端说话人日志(EEND):采用EEND网络直接输出每个说话人的语音活动检测结果,识别任意说话人重叠区域。
  • 无监督聚类:结合传统的“特征提取-无监督聚类”框架进行全局人数检测,输出粗粒度的说话人ID段落结果。

如何运行 3D-Speaker

安装 3D-Speaker

git clone https://github.com/modelscope/3D-Speaker.git && cd 3D-Speaker
conda create -n 3D-Speaker python=3.8
conda activate 3D-Speaker
pip install -r requirements.txt

运行实验

# 说话人验证:ERes2NetV2 在 3D-Speaker 数据集上
cd egs/3dspeaker/sv-eres2netv2/
bash run.sh

# 说话人验证:CAM++ 在 3D-Speaker 数据集上
cd egs/3dspeaker/sv-cam++/
bash run.sh

# 说话人验证:ECAPA-TDNN 在 3D-Speaker 数据集上
cd egs/3dspeaker/sv-ecapa/
bash run.sh

使用预训练模型进行推理

# 安装 modelscope
pip install modelscope

# ERes2Net 训练于 200k 标记说话人
model_id=iic/speech_eres2net_sv_zh-cn_16k-common

# ERes2NetV2 训练于 200k 标记说话人
model_id=iic/speech_eres2netv2_sv_zh-cn_16k-common

# CAM++ 训练于 200k 标记说话人
model_id=iic/speech_campplus_sv_zh-cn_16k-common

# 运行 CAM++ 或 ERes2Net 推理
python speakerlab/bin/infer_sv.py --model_id $model_id

# 运行批量推理
python speakerlab/bin/infer_sv_batch.py --model_id $model_id --wavs $wav_list

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
4天前
|
存储 人工智能 JSON
RAG Logger:专为检索增强生成(RAG)应用设计的开源日志工具,支持查询跟踪、性能监控
RAG Logger 是一款专为检索增强生成(RAG)应用设计的开源日志工具,支持查询跟踪、检索结果记录、LLM 交互记录和性能监控等功能。
24 7
RAG Logger:专为检索增强生成(RAG)应用设计的开源日志工具,支持查询跟踪、性能监控
|
8天前
|
人工智能 开发框架 算法
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
Qwen-Agent 是阿里通义开源的一个基于 Qwen 模型的 Agent 应用开发框架,支持指令遵循、工具使用、规划和记忆能力,适用于构建复杂的智能代理应用。
127 10
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
|
11天前
|
人工智能 测试技术 开发者
通义发布最强开源多模态推理模型QVQ!
通义发布最强开源多模态推理模型QVQ!
202 18
|
12天前
|
机器学习/深度学习 算法 网络协议
开源上新|通义语音处理技术ClearerVoice-Studio
开源上新|通义语音处理技术ClearerVoice-Studio
|
12天前
|
人工智能 算法 数据挖掘
开源更新|通义3D-Speaker多说话人日志功能
开源更新|通义3D-Speaker多说话人日志功能
|
2月前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
496 30
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
26天前
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。
|
3月前
|
XML JSON Java
Logback 与 log4j2 性能对比:谁才是日志框架的性能王者?
【10月更文挑战第5天】在Java开发中,日志框架是不可或缺的工具,它们帮助我们记录系统运行时的信息、警告和错误,对于开发人员来说至关重要。在众多日志框架中,Logback和log4j2以其卓越的性能和丰富的功能脱颖而出,成为开发者们的首选。本文将深入探讨Logback与log4j2在性能方面的对比,通过详细的分析和实例,帮助大家理解两者之间的性能差异,以便在实际项目中做出更明智的选择。
368 3
|
4天前
|
SQL 关系型数据库 MySQL
MySQL事务日志-Undo Log工作原理分析
事务的持久性是交由Redo Log来保证,原子性则是交由Undo Log来保证。如果事务中的SQL执行到一半出现错误,需要把前面已经执行过的SQL撤销以达到原子性的目的,这个过程也叫做"回滚",所以Undo Log也叫回滚日志。
MySQL事务日志-Undo Log工作原理分析
|
1月前
|
存储 监控 安全
什么是事件日志管理系统?事件日志管理系统有哪些用处?
事件日志管理系统是IT安全的重要工具,用于集中收集、分析和解释来自组织IT基础设施各组件的事件日志,如防火墙、路由器、交换机等,帮助提升网络安全、实现主动威胁检测和促进合规性。系统支持多种日志类型,包括Windows事件日志、Syslog日志和应用程序日志,通过实时监测、告警及可视化分析,为企业提供强大的安全保障。然而,实施过程中也面临数据量大、日志管理和分析复杂等挑战。EventLog Analyzer作为一款高效工具,不仅提供实时监测与告警、可视化分析和报告功能,还支持多种合规性报告,帮助企业克服挑战,提升网络安全水平。

热门文章

最新文章