PromptWizard:微软开源 AI 提示词自动化优化框架,能够迭代优化提示指令和上下文示例,提升 LLMs 特定任务的表现

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: PromptWizard 是微软开源的 AI 提示词自动化优化框架,通过自我演变和自我适应机制,迭代优化提示指令和上下文示例,提升大型语言模型(LLMs)在特定任务中的表现。本文详细介绍了 PromptWizard 的主要功能、技术原理以及如何运行该框架。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:自动化优化提示词,提升 LLMs 在特定任务中的表现。
  2. 机制:通过反馈驱动的批评和合成过程,迭代优化提示指令和示例。
  3. 应用:适用于情感分析、智能教育助手、医疗诊断支持等多个领域。

正文(附运行示例)

PromptWizard 是什么

公众号: 蚝油菜花 - PromptWizard

PromptWizard 是微软推出的自动化提示优化框架,旨在改进大型语言模型(LLMs)在特定任务中的表现。该框架基于自我演变和自我适应机制,通过反馈驱动的批评和合成过程,在探索和利用之间找到平衡,迭代地优化提示指令和上下文示例,从而提高模型的准确性和效率,减少 API 调用和令牌使用,降低成本。

PromptWizard 在多个任务和数据集上展现了卓越的性能,即使在训练数据有限或使用较小模型的情况下也能保持高效。

PromptWizard 的主要功能

  • 自动化提示优化:自动优化 LLMs 的提示,提高特定任务的性能。
  • 自我演变和自我适应:框架能自我演变和适应,生成更好的任务特定提示。
  • 反馈驱动的批评和合成:基于反馈机制,不断改进提示和示例。
  • 迭代细化:框架迭代地细化提示指令和上下文示例,提升模型输出的质量。

PromptWizard 的技术原理

  • 问题表述:用问题描述和初始提示指令开始,为后续优化提供基础。
  • 迭代细化提示指令:通过变异、评分、批评和合成组件,生成更具体和有效的指令。
  • 识别多样化示例:从训练数据中选择正例和负例,优化提示。
  • 顺序优化:同时优化提示指令和少量示例,基于迭代反馈循环进行。
  • 自我生成的推理和验证:自动为每个示例生成详细的推理链,验证示例的一致性和相关性。
  • 任务意图和专家角色的整合:将任务意图和专家角色整合到提示中,提高模型性能和解释性。

如何运行 PromptWizard

安装

  1. 克隆仓库:

    git clone https://github.com/microsoft/PromptWizard
    cd PromptWizard
    
  2. 创建并激活虚拟环境:

  • 在 Windows 上:

    python -m venv venv
    venv\Scripts\activate
    
  • 在 macOS/Linux 上:

    python -m venv venv
    source venv/bin/activate
    
  1. 安装包:
    pip install -e .
    

快速开始

PromptWizard 提供了三种主要的使用场景:

  1. 优化提示而不使用示例
  2. 生成合成示例并使用它们优化提示
  3. 使用训练数据优化提示

运行 PromptWizard 的示例

以下是使用 PromptWizard 优化提示的简单示例:

  1. 设置环境变量

    from dotenv import load_dotenv
    load_dotenv(override=True)
    
  2. 导入依赖

    import sys
    sys.path.insert(0, "../../")
    import promptwizard
    from promptwizard.glue.promptopt.instantiate import GluePromptOpt
    from promptwizard.glue.promptopt.techniques.common_logic import DatasetSpecificProcessing
    from promptwizard.glue.common.utils.file import save_jsonlist
    from typing import Any
    from tqdm import tqdm
    from re import compile, findall
    import os
    from datasets import load_dataset
    import yaml
    
  3. 更新 YAML 文件

    def update_yaml_file(file_path, config_dict):
     with open(file_path, 'r') as file:
         data = yaml.safe_load(file)
     for field, value in config_dict.items():
         data[field] = value
     with open(file_path, 'w') as file:
         yaml.dump(data, file, default_flow_style=False)
     print("YAML file updated successfully!")
    
  4. 设置路径

    path_to_config = "configs"
    promptopt_config_path = os.path.join(path_to_config, "promptopt_config.yaml")
    setup_config_path = os.path.join(path_to_config, "setup_config.yaml")
    
  5. 优化提示的三种情景

情景 1:无训练数据,且不想在最终提示中使用上下文示例
file_path = 'configs/promptopt_config.yaml'
config_dict = {
   
    "task_description": "You are a mathematics expert. You will be given a mathematics problem which you need to solve",
    "base_instruction": "Lets think step by step.",
    "mutation_rounds": 5
}
update_yaml_file(file_path, config_dict)

gp = GluePromptOpt(promptopt_config_path, setup_config_path, dataset_jsonl=None, data_processor=None)
best_prompt, expert_profile = gp.get_best_prompt(use_examples=False, run_without_train_examples=True, generate_synthetic_examples=False)
情景 2:无训练数据,但在最终提示中使用上下文示例
  • 步骤 1:生成合成数据
    ```python
    file_path = 'configs/promptopt_config.yaml'
    config_dict = {
    "num_train_examples": 20
    }
    update_yaml_file(file_path, config_dict)

gp = GluePromptOpt(promptopt_config_path, setup_config_path, dataset_jsonl=None, data_processor=None)
best_prompt, expert_profile = gp.get_best_prompt(use_examples=False, run_without_train_examples=False, generate_synthetic_examples=True)


- **步骤 2:使用合成数据优化提示**
```python
class GSM8k(DatasetSpecificProcessing):
    def dataset_to_jsonl(self, dataset_jsonl: str, **kwargs: Any) -> None:
        def extract_answer_from_output(completion):
            ans_re = compile(r"#### (-?[0-9\.,]+)")
            self.INVALID_ANS = "[invalid]"
            match = ans_re.search(completion)
            if match:
                match_str = match.group(1).strip()
                match_str = match_str.replace(",", "")
                return match_str
            else:
                return self.INVALID_ANS

        examples_set = []
        for _, sample in tqdm(enumerate(kwargs["dataset"]), desc="Evaluating samples"):
            example = {
                DatasetSpecificProcessing.QUESTION_LITERAL: sample['question'],
                DatasetSpecificProcessing.ANSWER_WITH_REASON_LITERAL: sample['answer'],
                DatasetSpecificProcessing.FINAL_ANSWER_LITERAL: extract_answer_from_output(sample["answer"])
            }
            examples_set.append(example)

        save_jsonlist(dataset_jsonl, examples_set, "w")

    def extract_final_answer(self, answer: str):
        if not answer:
            return self.INVALID_ANS

        model_pred = answer.lower()
        preds = model_pred.split(self.ANSWER_START.lower())
        answer_flag = True if len(preds) > 1 else False

        pred = preds[-1].replace(",", "")
        pred = [s for s in findall(r'-?\d+\.?\d*', pred)]

        if len(pred) == 0:
            return self.INVALID_ANS

        if answer_flag:
            pred = pred[0]
        else:
            pred = pred[-1]

        if pred[-1] == ".":
            pred = pred[:-1]
        return pred

gsm8k_processor = GSM8k()

file_path = 'configs/promptopt_config.yaml'
config_dict = {
    "task_description": "You are a mathematics expert. You will be given a mathematics problem which you need to solve",
    "base_instruction": "Lets think step by step.",
    "mutation_rounds": 2,
    "few_shot_count": 5,
    "generate_reasoning": True,
    "mutate_refine_iterations": 3,
    "seen_set_size": 20
}
update_yaml_file(file_path, config_dict)

gp = GluePromptOpt(promptopt_config_path, setup_config_path, dataset_jsonl="train_synthetic.jsonl", data_processor=gsm8k_processor)
best_prompt, expert_profile = gp.get_best_prompt(use_examples=True, run_without_train_examples=False, generate_synthetic_examples=False)
情景 3:有训练数据,并在最终提示中使用上下文示例
if not os.path.exists("data"):
    os.mkdir("data")

dataset = load_dataset("openai/gsm8k", "main")
num_samples = 0
for dataset_type in ['train', 'test']:
    data_list = []
    for data in dataset[dataset_type]:
        data_list.append({
   "question": data['question'], "answer": data['answer']})
        if num_samples == 100 and dataset_type == 'train':
            break
        num_samples += 1
    gsm8k_processor.dataset_to_jsonl(f"data/{dataset_type}.jsonl", dataset=data_list)

file_path = 'configs/promptopt_config.yaml'
config_dict = {
   
    "task_description": "You are a mathematics expert. You will be given a mathematics problem which you need to solve",
    "base_instruction": "Lets think step by step.",
    "mutation_rounds": 2,
    "few_shot_count": 5,
    "generate_reasoning": True,
    "mutate_refine_iterations": 3,
    "seen_set_size": 20
}
update_yaml_file(file_path, config_dict)

gp = GluePromptOpt(promptopt_config_path, setup_config_path, dataset_jsonl=os.path.join("data", "train.jsonl"), data_processor=gsm8k_processor)
best_prompt, expert_profile = gp.get_best_prompt(use_examples=True, run_without_train_examples=False, generate_synthetic_examples=False)

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
Agent Laboratory:AI自动撰写论文,AMD开源自动完成科研全流程的多智能体框架
Agent Laboratory 是由 AMD 和约翰·霍普金斯大学联合推出的自主科研框架,基于大型语言模型,能够加速科学发现、降低成本并提高研究质量。
81 23
Agent Laboratory:AI自动撰写论文,AMD开源自动完成科研全流程的多智能体框架
|
7天前
|
人工智能
RealisHuman:AI 生成的人像不真实?后处理框架帮你修复生成图像中畸形人体部位
RealisHuman 是一个创新的后处理框架,专注于修复生成图像中畸形的人体部位,如手和脸,通过两阶段方法提升图像的真实性。
48 11
RealisHuman:AI 生成的人像不真实?后处理框架帮你修复生成图像中畸形人体部位
|
8天前
|
人工智能 运维 Prometheus
AIOpsLab:云服务自动化运维 AI,微软开源云服务 AI 框架,覆盖整个生命周期
AIOpsLab 是微软等机构推出的开源框架,支持云服务自动化运维,涵盖故障检测、根本原因分析等完整生命周期。
77 13
AIOpsLab:云服务自动化运维 AI,微软开源云服务 AI 框架,覆盖整个生命周期
|
2天前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
30 7
|
19天前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|AI大模型在汽车行业的前沿应用研修-某汽车集团
本课程是TsingtaoAI为某汽车集团高级项目经理设计研发,课程全面系统地解析AI的发展历程、技术基础及其在汽车行业的深度应用。通过深入浅出的理论讲解、丰富的行业案例分析以及实战项目训练,学员将全面掌握机器学习、深度学习、NLP与CV等核心技术,了解自动驾驶、智能制造、车联网与智能营销等关键应用场景,洞悉AI技术对企业战略布局的深远影响。
168 97
|
9天前
|
机器学习/深度学习 人工智能 算法
AI在体育分析与预测中的深度应用:变革体育界的智能力量
AI在体育分析与预测中的深度应用:变革体育界的智能力量
67 31
|
4天前
|
人工智能 运维 负载均衡
智能运维新时代:AI在云资源管理中的应用与实践
智能运维新时代:AI在云资源管理中的应用与实践
74 23
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
75 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
11天前
|
机器学习/深度学习 人工智能 监控
AI在交通管理系统中的应用
AI在交通管理系统中的应用
53 23
|
23小时前
|
人工智能 运维 物联网
云大使 X 函数计算 FC 专属活动上线!享返佣,一键打造 AI 应用
如今,AI 技术已经成为推动业务创新和增长的重要力量。但对于许多企业和开发者来说,如何高效、便捷地部署和管理 AI 应用仍然是一个挑战。阿里云函数计算 FC 以其免运维的特点,大大降低了 AI 应用部署的复杂性。用户无需担心底层资源的管理和运维问题,可以专注于应用的创新和开发,并且用户可以通过一键部署功能,迅速将 AI 大模型部署到云端,实现快速上线和迭代。函数计算目前推出了多种规格的云资源优惠套餐,用户可以根据实际需求灵活选择。

热门文章

最新文章