ClickHouse安装教程:开启你的列式数据库之旅

简介: ClickHouse 是一个高性能的列式数据库管理系统,适用于在线分析处理(OLAP)。本文介绍了 ClickHouse 的基本使用步骤,包括下载二进制文件、安装应用、启动服务器和客户端、创建表、插入数据以及查询新表。还提到了图形客户端 DBeaver 的使用,使操作更加直观。通过这些步骤,用户可以快速上手并利用 ClickHouse 的强大性能进行数据分析。

添加图片注释,不超过 140 字(可选)

ClickHouse是一个高性能的列式数据库管理系统,适用于在线分析处理(OLAP)。以下是ClickHouse的一些基本使用步骤:

  1. 下载二进制文件:您可以通过运行以下curl命令在Linux、FreeBSD或macOS上本地下载ClickHouse:

curl https://clickhouse.com/ | sh


添加图片注释,不超过 140 字(可选)


此安装方式也是目前官方推荐的安装方式,执行完后,会下载二进制文件


添加图片注释,不超过 140 字(可选)


  1. 安装应用:按照上一步输出的命令提示执行

./clickhouse install

中间会提示输入数据库密码,输入后回车


添加图片注释,不超过 140 字(可选)


看到这个就是安装成功了

  1. 启动服务器:运行以下命令来启动ClickHouse服务器:

clickhouse start


添加图片注释,不超过 140 字(可选)


  1. 启动客户端:使用clickhouse-client连接到您的ClickHouse服务。打开一个新的终端,切换到保存clickhouse二进制文件的目录,然后运行以下命令:

clickhouse-client --password xxx


添加图片注释,不超过 140 字(可选)


Warnings:

  • Delay accounting is not enabled, OSIOWaitMicroseconds will not be gathered. You can enable it using echo 1 > /proc/sys/kernel/task_delayacct or by using sysctl.
  • Maximum number of threads is lower than 30000. There could be problems with handling a lot of simultaneous queries.


一般不用管它,当然也可以调怎一下:

  • 延迟计算未启用:这意味着OSIOWaitMicroseconds(操作系统输入/输出等待时间的微秒数)将无法收集。要解决这个问题,您可以通过以下命令启用延迟计算:

echo 1 > /proc/sys/kernel/task_delayacct

  • 线程数低于30000:这个警告表明,当前设置的线程数可能不足以处理大量的同时查询。您可以通过修改ClickHouse的配置文件来增加线程数。在/etc/clickhouse-server/config.xml文件中找到max_threads设置,并根据您的服务器性能和负载情况进行调整。如:

<yandex>   ...   <max_threads>30000</max_threads>   ... </yandex>

调整后,重启ClickHouse服务

  1. 创建表:使用CREATE TABLE定义一个新表。ClickHouse中的典型SQL DDL命令工作正常,但需要添加一个ENGINE子句。使用MergeTree可以利用ClickHouse的性能优势:

CREATE TABLE my_table (   user_id UInt32,   message String,   timestamp DateTime ) ENGINE = MergeTree PRIMARY KEY (user_id, timestamp)

添加图片注释,不超过 140 字(可选)


  1. 插入数据:您可以使用熟悉的INSERT INTO TABLE命令与ClickHouse一起使用,但重要的是要理解,每次插入到MergeTree表都会在存储中创建一个部分(文件夹)。为了最小化部分,一次性批量插入大量行(成千上万甚至数百万):

INSERT INTO my_table (user_id, message, timestamp) VALUES   (101, 'Hello, ClickHouse!', now()),   (102, 'Insert a lot of rows per batch', yesterday()),   (102, 'Sort your data based on your commonly-used queries', today()),   (101, 'Granules are the smallest chunks of data read', now() + 5)

添加图片注释,不超过 140 字(可选)


  1. 查询新表:您可以像使用任何SQL数据库一样编写SELECT查询:

SELECT * FROM my_table ORDER BY timestamp


添加图片注释,不超过 140 字(可选)



ClickHouse图形客户端

上面我们使用的是命令行客户端连接clickhouse,当然也是有图形客户端可以使用的,我们来看看DBeaver,基本上和MySQL一样。


添加图片注释,不超过 140 字(可选)



添加图片注释,不超过 140 字(可选)


目录
相关文章
|
3月前
|
存储 关系型数据库 MySQL
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB区别,适用场景
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景比较
|
3月前
|
存储 分布式计算 数据库
阿里云国际版设置数据库云分析工作负载的 ClickHouse 版
阿里云国际版设置数据库云分析工作负载的 ClickHouse 版
|
4月前
|
存储 SQL 缓存
数据库测试|Elasticsearch和ClickHouse的对决
由于目前市场上主流的数据库有许多,这次我们选择其中一个比较典型的Elasticsearch来和ClickHouse做一次实战测试,让大家更直观地看到真实的比对数据,从而对这两个数据库有更深入的了解,也就能理解为什么我们会选择ClickHouse。
数据库测试|Elasticsearch和ClickHouse的对决
|
3月前
|
存储 关系型数据库 MySQL
四种数据库对比MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景
四种数据库对比 MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景
|
7月前
|
DataWorks API 调度
DataWorks产品使用合集之在调度配置配置了节点的上游节点输出,没办法自动生成这个flow的依赖,该怎么操作
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
7月前
|
DataWorks 安全 关系型数据库
DataWorks产品使用合集之建了 polar 与clickhouse的数据源。为什么数据库这里总是mysql呢
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
6月前
|
存储 大数据 关系型数据库
从 ClickHouse 到阿里云数据库 SelectDB 内核 Apache Doris:快成物流的数智化货运应用实践
目前已经部署在 2 套生产集群,存储数据总量达百亿规模,覆盖实时数仓、BI 多维分析、用户画像、货运轨迹信息系统等业务场景。
|
7月前
|
存储 SQL 运维
OLAP数据库选型指南:Doris与ClickHouse的深入对比与分析
OLAP数据库选型指南:Doris与ClickHouse的深入对比与分析
|
8月前
|
关系型数据库 MySQL 数据库
ClickHouse(07)ClickHouse数据库引擎解析
ClickHouse支持多种数据库引擎,包括Atomic(默认)、MySQL、MaterializeMySQL、Lazy、PostgreSQL、MaterializedPostgreSQL。Atomic提供非阻塞的表操作和原子的表交换,有UUID标识和延迟删除功能。MySQL引擎允许与远程MySQL服务器交互,支持INSERT和SELECT,不支持RENAME操作。PostgreSQL引擎类似,可与远程PostgreSQL服务进行读写操作。SQLite引擎用于连接SQLite数据库。实验性引擎如MaterializeMySQL和MaterializedPostgreSQL用于实现实时数据同步。
618 5
|
8月前
|
消息中间件 Java Kafka
实时计算 Flink版产品使用合集之可以将数据写入 ClickHouse 数据库中吗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
253 1