Pytorch学习笔记(十):Torch对张量的计算、Numpy对数组的计算、它们之间的转换

简介: 这篇文章是关于PyTorch张量和Numpy数组的计算方法及其相互转换的详细学习笔记。

Torch对张量的计算

#pytorch张量
import torch
'''张量定义'''
a=torch.FloatTensor(2,3)#定义一个两行三列的张量
b=torch.FloatTensor([2,3,4,5])#定义一个四行一列的张量,并给每个数字赋值
c=torch.rand(2,3)#定义一个两行三列的张量,并以0~1之间的随机数填充
d=torch.randn(2,3)#定义一个两行三列的张量,并以均值为0,且方差为1的正态分布随机数填充
e=torch.arange(1,20,1)#定义从起始值(参数一),到结束值(参数二),以步长(参数三)为间隔的单列多行张量
f=torch.zeros(2,3)#定义一个两行三列的张量,初始化为0,效果同a
'''张量计算'''
g=torch.abs(d)#返回张量绝对值
g=torch.add(g,d)#两同维度张量值对应相加
g=torch.add(g,10)#张量值全部加10
#另外div为除法,mul为乘法,用法皆同加法
g=torch.clamp(g,-0.1,0.1)#张量裁剪,第二个参数和第三个参数分别为上下边界
g=torch.pow(g,2)#求幂,第二个参数为幂数
'''矩阵乘法'''
a=torch.randn(2,3)
b=torch.randn(3,2)
c=torch.mm(a,b)

Numpy对数组的计算

#numpy
import numpy as np
'''numpy定义'''
a=np.array([2,3,4]) #创造秩为1,内容为2,3,4的数组
b=np.array([(2,3,4), (4,5,6)]) #创造秩为2的数组,也就是二维数组
c=np.array([[2,3,4], [4,5,6]]) #同上,只是写法不一样
d=np.array([[2,3,4], [4,5,6]],dtype=complex) #显式指明数据类型
e=np.zeros((3,4))#创造一个3行4列的矩阵,并初始化为0,数据类型默认为float64,可自定义:dtype=np.int32
f=np.ones((3,4))#创造一个3行4列的矩阵,并初始化为1
g=np.empty((3,4))#创造一个3行4列的矩阵,未初始化,为随机值
h=np.arange(5)#定义从0开始,步长为1的秩为1的5个数的数组
i=np.arange(10,30,5)#定义从起始值(参数一),到结束值(参数二),以步长(参数三)为间隔的秩为1的数组
j=np.linspace(0,2,9)#定义从0到2(包括两者)间的秩为1的9个数的数组
'''numpy计算'''
k=e-f#减法计算,按位相减
l=h**2#平方运算,按位求平方
n=np.sin(l)#三角函数运算,按位求三角函数
m=h<3#比较逻辑运算,按位比较,满足为真,不满足为假
o=b*c#乘法运算,按位相乘
p=np.transpose(c)#矩阵转置
q=b.dot(p)#矩阵相乘
r=h.sum()#数组全体数求和
s=h.min()#取数组中的最小值
t=h.max()#取数组中的最大值
'''numpy索引'''
u=np.arange(10)**3
print(u[2])#索引数组的第二项
print(u[2:5])#索引数组第二到五项
u[0:6:2]=-100#从开始位置到索引为6的元素为止,每隔一个元素将其赋值为-100(第一个参数可以不写,则默认为0)
v=u[::-1]#反转u
'''遍历数组'''
for i in u:
    print(i)
'''用函数创建数组'''
def f(x,y):
    return 10*x+y
w=np.fromfunction(f,(5,4),dtype=int)
print(w[2,3])#二维数组数值索引
print(w[0:5,1])#二维数组0~4行第二个元素索引
print(w[:,1])#二维数组每行第二个元素索引
print(w[1:3,:])#二维数组第2到3行索引
print(w[-1])#二维数组最后一行索引,等价于print(w[-1,:])
print(d.dtype)#获得数据类型

张量和数组的转换

import torch
'''numpy转tensor'''
color = np.array([[[0, 0, 0], [128, 0, 0], [0, 128, 0]],[[0, 0, 0], [128, 0, 0], [0, 128, 0]]])
b = torch.from_numpy(color)
'''将矩阵展开成一维'''
target = b.contiguous() .view(-1)
'''将矩阵展前面的维度展开,保持最后一维'''
target = b.contiguous() .view(-1,3)
'''维度转换'''
outlabimg = b.transpose(0, 1)#第0维和第1维互换
'''相同数值统计'''
a=torch.FloatTensor([[[2,3,0,5],[2,3,0,5]],[[2,3,0,5],[2,3,0,5]]])
b=torch.FloatTensor([[[2,3,4,5],[2,3,0,5]],[[2,3,0,5],[2,3,0,5]]])
equl=(a==b).sum()
print(a.shape)
print(equl)
目录
相关文章
|
2月前
|
Java 数据处理 索引
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
189 0
|
PyTorch 算法框架/工具
Pytorch学习笔记(五):nn.AdaptiveAvgPool2d()函数详解
PyTorch中的`nn.AdaptiveAvgPool2d()`函数用于实现自适应平均池化,能够将输入特征图调整到指定的输出尺寸,而不需要手动计算池化核大小和步长。
1116 1
Pytorch学习笔记(五):nn.AdaptiveAvgPool2d()函数详解
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
2336 2
|
PyTorch 算法框架/工具
Pytorch学习笔记(六):view()和nn.Linear()函数详解
这篇博客文章详细介绍了PyTorch中的`view()`和`nn.Linear()`函数,包括它们的语法格式、参数解释和具体代码示例。`view()`函数用于调整张量的形状,而`nn.Linear()`则作为全连接层,用于固定输出通道数。
923 0
Pytorch学习笔记(六):view()和nn.Linear()函数详解
|
PyTorch 算法框架/工具
Pytorch学习笔记(七):F.softmax()和F.log_softmax函数详解
本文介绍了PyTorch中的F.softmax()和F.log_softmax()函数的语法、参数和使用示例,解释了它们在进行归一化处理时的作用和区别。
1353 1
Pytorch学习笔记(七):F.softmax()和F.log_softmax函数详解
|
机器学习/深度学习 PyTorch 算法框架/工具
Pytorch学习笔记(八):nn.ModuleList和nn.Sequential函数详解
PyTorch中的nn.ModuleList和nn.Sequential函数,包括它们的语法格式、参数解释和具体代码示例,展示了如何使用这些函数来构建和管理神经网络模型。
2123 1
|
7月前
|
机器学习/深度学习 PyTorch API
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
本文深入探讨神经网络模型量化技术,重点讲解训练后量化(PTQ)与量化感知训练(QAT)两种主流方法。PTQ通过校准数据集确定量化参数,快速实现模型压缩,但精度损失较大;QAT在训练中引入伪量化操作,使模型适应低精度环境,显著提升量化后性能。文章结合PyTorch实现细节,介绍Eager模式、FX图模式及PyTorch 2导出量化等工具,并分享大语言模型Int4/Int8混合精度实践。最后总结量化最佳策略,包括逐通道量化、混合精度设置及目标硬件适配,助力高效部署深度学习模型。
1190 21
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
|
3月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
210 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
2月前
|
边缘计算 人工智能 PyTorch
130_知识蒸馏技术:温度参数与损失函数设计 - 教师-学生模型的优化策略与PyTorch实现
随着大型语言模型(LLM)的规模不断增长,部署这些模型面临着巨大的计算和资源挑战。以DeepSeek-R1为例,其671B参数的规模即使经过INT4量化后,仍需要至少6张高端GPU才能运行,这对于大多数中小型企业和研究机构来说成本过高。知识蒸馏作为一种有效的模型压缩技术,通过将大型教师模型的知识迁移到小型学生模型中,在显著降低模型复杂度的同时保留核心性能,成为解决这一问题的关键技术之一。
|
9月前
|
机器学习/深度学习 JavaScript PyTorch
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
生成对抗网络(GAN)的训练效果高度依赖于损失函数的选择。本文介绍了经典GAN损失函数理论,并用PyTorch实现多种变体,包括原始GAN、LS-GAN、WGAN及WGAN-GP等。通过分析其原理与优劣,如LS-GAN提升训练稳定性、WGAN-GP改善图像质量,展示了不同场景下损失函数的设计思路。代码实现覆盖生成器与判别器的核心逻辑,为实际应用提供了重要参考。未来可探索组合优化与自适应设计以提升性能。
779 7
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体

推荐镜像

更多