基于prim算法求出网络最小生成树实现网络社团划分和规划

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 该程序使用MATLAB 2022a版实现路线规划,通过排序节点权值并运用Prim算法生成最小生成树完成网络规划。程序基于TSP问题,采用遗传算法与粒子群优化算法进行路径优化。遗传算法通过编码、选择、交叉及变异操作迭代寻优;粒子群优化算法则通过模拟鸟群觅食行为,更新粒子速度和位置以寻找最优解。

1.程序功能描述
路线制定

1,将算法得到的各社团的需充电节点数量排序,将其视为节点权值

2,利用prim算法求出最小生成树,即完成了整个网络规划。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

3.核心程序

%节点权值
W   = [];
Xz  = [];
Yz  = [];
Ridx= 0;
for j=1:length(Cpn)
    if Cpn(j) == 0%N型社团
       Ridx    = Ridx + 1; 
       tmp     = C{j,1};
       E       = Eres(tmp);
       %找到能量最小的三个
       [VV,II] = sort(E);
       %求出其质心作为停留点
       indx    = tmp(II(1:min(3,length(tmp))));
       Xz      = [Xz,mean(Xo(indx))];
       Yz      = [Yz,mean(Yo(indx))];
       %分析无需充电节点
       Nindx1  = find(E>=0.9*Ec);
       %分析需充电节点
       Nindx2  = find(E< 0.9*Ec);
       %权值
       W       = [W,length(Nindx2)];
    end
end
%权值
W
%利用prim算法求出最小生成树,即完成了整个网络规划
figure;
for j = 1:length(Cj)
    tmp = Cj{j,1};
    X0  = Xo(tmp);
    Y0  = Yo(tmp);
    plot(X0,Y0,colors{j});
    hold on
    Xc(j)= mean(X0);
    Yc(j)= mean(Y0);
    for i = 1:length(tmp)
        dist(i) = sqrt((Xc(j)-X0(i))^2 + (Yc(j)-Y0(i))^2);
    end
    if Cpn(j) == 1
       plot3(Xc(j),Yc(j),max(dist)); 
    else
       plot4(Xc(j),Yc(j),max(dist)); 
    end
    hold on
end
plot(Xc,Yc,'rs','LineWidth',2,'MarkerEdgeColor','b','MarkerFaceColor','y','MarkerSize',10)
title('社团划分结果(Red:P;Black:N),Yellow:P&N中心点');
hold on
[All_Lens,T,xx,yy]=func_prim([Xc;Yc]);
grid on;

%按先序遍历顺序访问
for i=1:length(T)-1
    Xc(i) = xx(T(1,i));
    Yc(i) = yy(T(1,i));
end
%统计首次通过的
Xc1 = unique(Xc);
Yc1 = unique(Yc);
%路由表,保存点坐标
[Xc1',Yc1']
12_035m

4.本算法原理
旅行商问题(Traveling Salesman Problem, TSP)是组合优化领域的一个经典NP难问题,旨在寻找访问一系列城市并返回起点的最短路径。TSP问题可以描述为:给定一个城市集合和每对城市之间的距离,要求找出访问每个城市一次并返回起点的最短路径。

4.1 遗传算法(Genetic Algorithm, GA)在TSP中的应用
遗传算法是一种模拟自然选择和遗传学机制的优化算法,适用于求解组合优化问题。在TSP问题中,GA通过编码生成初始路径种群,然后通过选择、交叉和变异等操作不断迭代优化,最终找到近似最优解。

编码方式:采用自然数编码,每个城市的编号代表一个基因,一条路径则由一串基因组成。
初始种群生成:随机生成一定数量的初始路径,构成初始种群。
适应度函数:以适应度函数来衡量每个个体的优劣。在TSP问题中,适应度函数通常取为路径长度的倒数。
选择操作:采用轮盘赌选择法,即根据每个个体的适应度值在总体适应度值中的比例来选择个体。
交叉操作:采用部分映射交叉(PMX)或顺序交叉(OX)等方法,生成新的个体。
变异操作:通过随机交换路径中两个城市的位置来实现变异。

4.2 粒子群优化算法在TSP中的应用
粒子群优化算法是一种模拟鸟群觅食行为的优化算法,适用于连续和离散优化问题。在TSP问题中,PSO将每个解看作一个粒子,通过不断更新粒子的速度和位置来寻找最优解。

  粒子表示:每个粒子表示一个可能的解,即一条路径。粒子的位置由路径中城市的排列顺序决定。
   速度更新公式:根据每个粒子的历史最优位置和群体最优位置来更新粒子的速度。速度更新公式为:(v_{id} = w * v_{id} + c1 * rand() * (pbest_{id} - x_{id}) + c2 * rand() * (gbest_d - x_{id})),其中 (v_{id}) 表示第i个粒子在第d维上的速度,(x_{id}) 表示第i个粒子在第d维上的位置,(pbest_{id}) 表示第i个粒子在第d维上的历史最优位置,(gbest_d) 表示群体在第d维上的最优位置,w为惯性权重,c1和c2为学习因子,rand()为随机数生成函数。

位置更新公式:根据更新后的速度来更新粒子的位置。位置更新公式为:(x{id} = x{id} + v_{id})。

   需要注意的是,在更新位置时要保证新生成的路径满足TSP问题的约束条件。
相关文章
|
16天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
61 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
74 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
2月前
|
存储 安全 网络安全
浅谈网络安全的认识与学习规划
浅谈网络安全的认识与学习规划
36 6
|
2月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
43 2
|
2月前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。