三分钟快速搭建基于FastAPI的AI Agent应用!

本文涉及的产品
视觉智能开放平台,视频资源包5000点
NLP自然语言处理_高级版,每接口累计50万次
视觉智能开放平台,分割抠图1万点
简介: 【10月更文挑战第1天】
fastapi==0.108.0
langchain_core==0.1.28
langchain_openai == 0.0.5
langchain_community==0.0.25
langchain==0.1.10
redis==7.2.0
qdrant_client == 1.7.1
uvicorn==0.23.2
pip install -r requirements.txt

想检查某依赖是否安装完毕:

pip show fastapi

那就先引入 fastapi。

# 这是一个使用 FastAPI 框架编写的简单应用程序的示例。
# 导入FastAPI模块
from fastapi import FastAPI

# 创建一个FastAPI应用实例
app = FastAPI()


# 定义一个路由,当访问'/'时会被触发
@app.get("/")
# 定义一个函数,返回一个字典,key为"Hello",value为"World"
def read_root():
    return {
   "Hello": "World"}


# 如果主程序为 __main__,则启动服务器
if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="localhost", port=8090)

如何运行呢?

直接点击它:

直达API文档

新增一个 chat 接口:

# 这是一个使用 FastAPI 框架编写的简单应用程序的示例。
# 导入FastAPI模块
from fastapi import FastAPI, BackgroundTasks

# 创建一个FastAPI应用实例
app = FastAPI()


# 定义一个路由,当访问'/'时会被触发
@app.get("/")
# 定义一个函数,返回一个字典,key为"Hello",value为"World"
def read_root():
    return {
   "Hello": "World"}


@app.post("/chat")
def chat():
    return {
   "response": "I am a chat bot!"}


# 如果主程序为 __main__,则启动服务器
if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="localhost", port=8090)

API文档立即更新:

同理,我们编写ws函数:

@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
    await websocket.accept()
    try:
        while True:
            data = await websocket.receive_text()
            await websocket.send_text(f"Message text was: {data}")
    except WebSocketDisconnect:
        print("Connection closed")
        await websocket.close()

使用 postman 构造 websocket 请求:

先点击 connect,再输入要发送的消息:你好。点击 send 即请求,响应了你好!

完整代码

# 这是一个使用 FastAPI 框架编写的简单应用程序的示例。
# 导入FastAPI模块
import os

from dotenv import load_dotenv, find_dotenv
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, BackgroundTasks
from langchain_openai import ChatOpenAI
from langchain.agents import create_openai_tools_agent, AgentExecutor, tool
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.schema import StrOutputParser
from langchain.memory import ConversationTokenBufferMemory
from langchain_community.chat_message_histories import RedisChatMessageHistory
from langchain_community.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
import asyncio
import uuid
from langchain_community.vectorstores import Qdrant
from qdrant_client import QdrantClient
from Mytools import *

# 设置 API 密钥
DASHSCOPE_API_KEY = "xxx"
load_dotenv(find_dotenv())
os.environ["DASHSCOPE_API_KEY"] = DASHSCOPE_API_KEY
os.environ["SERPAPI_API_KEY"] = "xxx"

# 创建一个FastAPI应用实例
app = FastAPI()


# 定义一个工具函数
@tool
def test():
    """ Test tool"""""
    return "test"


# 定义一个Master类
class Master:
    def __init__(self):
        # 初始化ChatOpenAI模型
        self.chatmodel = ChatOpenAI(
            api_key=os.getenv("DASHSCOPE_API_KEY"),
            base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
            model="qwen-plus",
            temperature=0,
            streaming=True,
        )
        # 设置记忆存储键名
        self.MEMORY_KEY = "chat_history"
        # 初始化系统提示模板
        self.SYSTEMPL = ""
        self.prompt = ChatPromptTemplate.from_messages(
            [
                (
                    "system",
                    "你是一个助手"
                ),
                (
                    "user",
                    "{input}"
                ),
                MessagesPlaceholder(variable_name="agent_scratchpad"),
            ],
        )
        # 初始化记忆存储
        self.memory = ""
        # 初始化工具列表
        tools = [test]
        # 创建OpenAI工具代理
        agent = create_openai_tools_agent(
            self.chatmodel,
            tools=tools,
            prompt=self.prompt,
        )
        # 创建代理执行器
        self.agent_executor = AgentExecutor(
            agent=agent,
            tools=tools,
            verbose=True,
        )

    # 定义运行方法
    def run(self, query):
        # 调用代理执行器并获取结果
        result = self.agent_executor.invoke({
   "input": query})
        # 返回执行器的响应
        return result


# 定义根路由
@app.get("/")
# 定义根路由处理函数,返回一个包含"Hello"和"World"的字典
def read_root():
    return {
   "Hello": "World"}


# 定义聊天路由
@app.post("/chat")
# 定义聊天路由处理函数,接收一个字符串查询并调用Master类的run方法进行处理
def chat(query: str):
    master = Master()  # 初始化Master对象
    return master.run(query)


# 定义添加PDF路由
@app.post("/add_pdfs")
# 定义添加PDF路由处理函数,返回一个包含"response"键和"PDFs added!"值的字典
def add_pdfs():
    return {
   "response": "PDFs added!"}


# 定义添加文本路由
@app.post("add_texts")
# 定义添加文本路由处理函数,返回一个包含"response"键和"Texts added!"值的字典
def add_texts():
    return {
   "response": "Texts added!"}


# 定义WebSocket路由
@app.websocket("/ws")
# 定义WebSocket路由处理函数,接收一个WebSocket连接并启动一个无限循环
async def websocket_endpoint(websocket: WebSocket):
    await websocket.accept()
    try:
        while True:
            data = await websocket.receive_text()
            await websocket.send_text(f"Message text was: {data}")
    except WebSocketDisconnect:
        print("Connection closed")
        await websocket.close()


# 如果主程序为 __main__,则启动服务器
if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="localhost", port=8090)

fastapi 请求:

postman 请求:

PyCharm 命令行记录:

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
8天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗诊断中的应用及前景展望
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、挑战与未来发展趋势。通过分析AI技术如何助力提高诊断准确率、缩短诊断时间以及降低医疗成本,揭示了其在现代医疗体系中的重要价值。同时,文章也指出了当前AI医疗面临的数据隐私、算法透明度等挑战,并对未来的发展方向进行了展望。
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
40 1
|
12天前
|
机器学习/深度学习 人工智能 算法
AI在医疗诊断中的应用
【10月更文挑战第42天】本文将探讨人工智能(AI)在医疗诊断中的应用,包括其优势、挑战和未来发展方向。我们将通过实例来说明AI如何改变医疗行业,提高诊断的准确性和效率。
|
22天前
|
存储 XML 人工智能
深度解读AI在数字档案馆中的创新应用:高效识别与智能档案管理
基于OCR技术的纸质档案电子化方案,通过先进的AI能力平台,实现手写、打印、复古文档等多格式高效识别与智能归档。该方案大幅提升了档案管理效率,确保数据安全与隐私,为档案馆提供全面、智能化的电子化管理解决方案。
142 48
|
13天前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
57 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
8天前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
35 4
|
18天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
55 10
|
11天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗诊断中的应用与挑战
本文旨在揭示人工智能(AI)技术如何革新医疗诊断领域,提高疾病预测的准确性和效率。通过分析AI在图像识别、数据分析等方面的应用实例,本文将探讨AI技术带来的便利及其面临的伦理和法律问题。文章还将提供代码示例,展示如何使用AI进行疾病诊断的基本过程。
|
18天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。