【机器学习】探索GRU:深度学习中门控循环单元的魅力

简介: 【机器学习】探索GRU:深度学习中门控循环单元的魅力

学习目标

🍀 了解GRU内部结构及计算公式.

🍀 掌握Pytorch中GRU工具的使用.

🍀 了解GRU的优势与缺点.

🍔 GRU介绍

GRU(Gated Recurrent Unit)也称门控循环单元结构, 它也是传统RNN的变体, 同LSTM一样能够有效捕捉长序列之间的语义关联, 缓解梯度消失或爆炸现象. 同时它的结构和计算要比LSTM更简单, 它的核心结构可以分为两个部分去解析:

  • 更新门

用于控制上一时间步的隐藏状态是否对当前时间步的输入进行更新。更新门的作用类似于LSTM中的遗忘门和输入门的组合,它决定了新信息进入当前隐藏状态的比例,以及保留多少旧信息。

  • 重置门

用于控制如何使用历史信息。当重置门接近0时,它几乎会忽略掉所有的历史信息,而只关注当前输入。这有助于模型在处理新的输入时能够“忘记”不相关的信息,从而更好地捕捉序列中的长期依赖关系。

🍔 GRU的内部结构图

2.1 GRU结构分析

 

  • 结构解释图:

 

  • GRU的更新门和重置门结构图:

 

  • 内部结构分析:
  • 和之前分析过的LSTM中的门控一样, 首先计算更新门和重置门的门值, 分别是z(t)和r(t), 计算方法就是使用X(t)与h(t-1)拼接进行线性变换, 再经过sigmoid激活. 之后重置门门值作用在了h(t-1)上, 代表控制上一时间步传来的信息有多少可以被利用. 接着就是使用这个重置后的h(t-1)进行基本的RNN计算, 即与x(t)拼接进行线性变化, 经过tanh激活, 得到新的h(t). 最后更新门的门值会作用在新的h(t),而1-门值会作用在h(t-1)上, 随后将两者的结果相加, 得到最终的隐含状态输出h(t), 这个过程意味着更新门有能力保留之前的结果, 当门值趋于1时, 输出就是新的h(t), 而当门值趋于0时, 输出就是上一时间步的h(t-1).

2.2 GRU工作原理

  • GRU通过引入重置门和更新门来控制信息的流动。重置门决定了当前输入与前一时刻状态如何混合,而更新门则决定了多少旧状态信息被保留到下一个状态。
  • 基于重置门和当前输入,GRU计算出一个候选隐藏状态,这个状态既包含了当前输入的信息,也包含了经过选择性保留的历史信息。
  • 最后,GRU根据更新门的选择性地将旧隐藏状态和候选隐藏状态进行加权平均,得到新的隐藏状态。这个过程既保留了长期依赖信息,又能够灵活地处理新的输入信息。

2.3 Bi-GRU介绍

Bi-GRU与Bi-LSTM的逻辑相同, 都是不改变其内部结构, 而是将模型应用两次且方向不同, 再将两次得到的LSTM结果进行拼接作为最终输出. 具体参见上小节中的Bi-LSTM.

2.4 使用Pytorch构建GRU模型

  • 位置: 在torch.nn工具包之中, 通过torch.nn.GRU可调用.
  • nn.GRU类初始化主要参数解释:
  • input_size: 输入张量x中特征维度的大小.
  • hidden_size: 隐层张量h中特征维度的大小.
  • num_layers: 隐含层的数量.
  • bidirectional: 是否选择使用双向LSTM, 如果为True, 则使用; 默认不使用.
  • nn.GRU类实例化对象主要参数解释:
  • input: 输入张量x.
  • h0: 初始化的隐层张量h.
  • nn.GRU使用示例:
>>> import torch
>>> import torch.nn as nn
>>> rnn = nn.GRU(5, 6, 2)
>>> input = torch.randn(1, 3, 5)
>>> h0 = torch.randn(2, 3, 6)
>>> output, hn = rnn(input, h0)
>>> output
tensor([[[-0.2097, -2.2225,  0.6204, -0.1745, -0.1749, -0.0460],
         [-0.3820,  0.0465, -0.4798,  0.6837, -0.7894,  0.5173],
         [-0.0184, -0.2758,  1.2482,  0.5514, -0.9165, -0.6667]]],
       grad_fn=<StackBackward>)
>>> hn
tensor([[[ 0.6578, -0.4226, -0.2129, -0.3785,  0.5070,  0.4338],
         [-0.5072,  0.5948,  0.8083,  0.4618,  0.1629, -0.1591],
         [ 0.2430, -0.4981,  0.3846, -0.4252,  0.7191,  0.5420]],
        [[-0.2097, -2.2225,  0.6204, -0.1745, -0.1749, -0.0460],
         [-0.3820,  0.0465, -0.4798,  0.6837, -0.7894,  0.5173],
         [-0.0184, -0.2758,  1.2482,  0.5514, -0.9165, -0.6667]]],
       grad_fn=<StackBackward>)

2.5 GRU优缺点

  • GRU的优势:
  • GRU和LSTM作用相同, 在捕捉长序列语义关联时, 能有效抑制梯度消失或爆炸, 效果都优于传统RNN且计算复杂度相比LSTM要小.
  • GRU的缺点:
  • GRU仍然不能完全解决梯度消失问题, 同时其作用RNN的变体, 有着RNN结构本身的一大弊端, 即不可并行计算, 这在数据量和模型体量逐步增大的未来, 是RNN发展的关键瓶颈.

🍔 小结

  • GRU(Gated Recurrent Unit)也称门控循环单元结构, 它也是传统RNN的变体, 同LSTM一样能够有效捕捉长序列之间的语义关联, 缓解梯度消失或爆炸现象. 同时它的结构和计算要比LSTM更简单, 它的核心结构可以分为两个部分去解析:
  • 更新门
  • 重置门
  • 内部结构分析:
  • 和之前分析过的LSTM中的门控一样, 首先计算更新门和重置门的门值, 分别是z(t)和r(t), 计算方法就是使用X(t)与h(t-1)拼接进行线性变换, 再经过sigmoid激活. 之后重置门门值作用在了h(t-1)上, 代表控制上一时间步传来的信息有多少可以被利用. 接着就是使用这个重置后的h(t-1)进行基本的RNN计算, 即与x(t)拼接进行线性变化, 经过tanh激活, 得到新的h(t). 最后更新门的门值会作用在新的h(t),而1-门值会作用在h(t-1)上, 随后将两者的结果相加, 得到最终的隐含状态输出h(t), 这个过程意味着更新门有能力保留之前的结果, 当门值趋于1时, 输出就是新的h(t), 而当门值趋于0时, 输出就是上一时间步的h(t-1).
  • Bi-GRU与Bi-LSTM的逻辑相同, 都是不改变其内部结构, 而是将模型应用两次且方向不同, 再将两次得到的LSTM结果进行拼接作为最终输出. 具体参见上小节中的Bi-LSTM.
  • Pytorch中GRU工具的使用:
  • 位置: 在torch.nn工具包之中, 通过torch.nn.GRU可调用.
  • GRU的优势:
  • GRU和LSTM作用相同, 在捕捉长序列语义关联时, 能有效抑制梯度消失或爆炸, 效果都优于传统RNN且计算复杂度相比LSTM要小.
  • GRU的缺点:
  • GRU仍然不能完全解决梯度消失问题, 同时其作用RNN的变体, 有着RNN结构本身的一大弊端, 即不可并行计算, 这在数据量和模型体量逐步增大的未来, 是RNN发展的关键瓶颈.

 

💘若能为您的学习之旅添一丝光亮,不胜荣幸💘

🐼期待您的宝贵意见,让我们共同进步共同成长🐼

相关文章
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的未来:机器学习与深度学习的融合之旅
【9月更文挑战第35天】在这篇文章中,我们将深入探讨人工智能的两大支柱——机器学习和深度学习。我们将通过代码示例和实际应用案例,揭示它们如何相互补充,共同推动AI技术的发展。无论你是初学者还是有经验的开发者,这篇文章都将为你提供宝贵的见解和启示。
44 0
|
6天前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
9天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
探索机器学习:从线性回归到深度学习
在这篇文章中,我们将一起踏上一场激动人心的旅程,穿越机器学习的广阔天地。我们将从最基本的线性回归开始,逐步深入到复杂的深度学习模型。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和深入的理解。让我们一起探索这个充满无限可能的世界吧!
|
6天前
|
机器学习/深度学习 算法
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
|
6天前
|
机器学习/深度学习 自然语言处理 PyTorch
【机器学习】探索LSTM:深度学习领域的强大时间序列处理能力
【机器学习】探索LSTM:深度学习领域的强大时间序列处理能力
|
6天前
|
机器学习/深度学习 存储 自然语言处理
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
3天前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
27天前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
63 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
8天前
|
机器学习/深度学习 算法
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理