PaddleNLP UIE 实体关系抽取 -- 抽取药品说明书(名称、规格、用法、用量)【废弃】

简介: PaddleNLP UIE 实体关系抽取 -- 抽取药品说明书(名称、规格、用法、用量)【废弃】

目录

环境问题,此文档废弃,移步 https://www.cnblogs.com/vipsoft/p/18281350


PaddleNLP UIE 实体关系抽取 -- 抽取药品说明书(名称、规格、用法、用量)

PaddlePaddle用户可领取免费Tesla V100在线算力资源,训练模型更高效。每日登陆即送8小时,前往使用免费算力

随便找个项目如:https://aistudio.baidu.com/projectdetail/1639963 打开后 Fork 一下。

环境依赖

https://gitee.com/paddlepaddle/PaddleNLP/tree/release/2.8#环境依赖

  • python >= 3.9.13
  • PandleNLP 2.7.2
  • paddlepaddle-gpu >= 2.5.2 # 涉及模型微调,必须 带GPU

https://www.cnblogs.com/vipsoft/p/17409174.html

PaddlePaddle 2.4.0 => Python 3.7.4

PaddlePaddle 2.4.1+ => Python 3.9.0

### 升级【每次重启 AI Studio 都需要升级,环境会被重置】
pip install --upgrade paddlepaddle-gpu==2.5.2
pip install --upgrade paddlenlp==2.7.2
aistudio@jupyter-2631487-6335886:~$ pip show paddlepaddle-gpu
Name: paddlepaddle-gpu
Version: 2.5.2
Summary: Parallel Distributed Deep Learning
Home-page: https://www.paddlepaddle.org.cn/
Author: 
Author-email: Paddle-better@baidu.com
License: Apache Software License
Location: /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages
Requires: astor, decorator, httpx, numpy, opt-einsum, Pillow, protobuf
Required-by: 
aistudio@jupyter-2631487-6335886:~$ pip show paddlenlp
Name: paddlenlp
Version: 2.7.2
Summary: Easy-to-use and powerful NLP library with Awesome model zoo, supporting wide-range of NLP tasks from research to industrial applications, including Neural Search, Question Answering, Information Extraction and Sentiment Analysis end-to-end system.
Home-page: https://github.com/PaddlePaddle/PaddleNLP
Author: PaddleNLP Team
Author-email: paddlenlp@baidu.com
License: Apache 2.0
Location: /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages
Requires: aistudio-sdk, colorama, colorlog, datasets, dill, fastapi, Flask-Babel, huggingface-hub, jieba, jinja2, multiprocess, onnx, paddle2onnx, paddlefsl, protobuf, rich, safetensors, sentencepiece, seqeval, tool-helpers, tqdm, typer, uvicorn, visualdl
Required-by: paddlehub
aistudio@jupyter-2631487-6335886:~$

配置SSH

AI Studio 不能访问 gitee 下载代码,因此可以跳过此小结 直接跳至 代码上传

生成SSH

ssh-keygen -t rsa -C "PandleNLP@UIE"

配置公钥

验证

ssh -T git@gitee.com

克隆代码

AI Studio 不能访问 gitee.com ,通过本地下载。再上传的方式操作

下载 V2.8

上传代码

解压代码

unzip PaddleNLP-release-2.8.zip

训练定制

代码结构

model_zoo/uie 目录代码文件说明如下:

.
├── utils.py          # 数据处理工具
├── model.py          # 模型组网脚本
├── doccano.py        # 数据标注脚本 => 下面数据转换时会用到
├── doccano.md        # 数据标注文档
├── finetune.py       # 模型微调、压缩脚本
├── evaluate.py       # 模型评估脚本
└── README.md

对于细分场景推荐使用轻定制功能(标注少量数据进行模型微调)以进一步提升效果

schema =['药品名称','用法','用量','频次']
ie = Taskflow('information_extraction',schema=schema)
pprint(ie("布洛芬分散片,口服或加水分散后服用。用于成人及12岁以上儿童,推荐剂里为一次0.2~0.4(1~2片)一日3次,或遵医嘱"))

如图:只能提取出药品名称,接下来,通过训练数据进行UIE模型微调

数据标注

详细过程参考 数据标注工具 doccano | 命名实体识别(Named Entity Recognition,简称NER)

准备语料库

准备语料库、每一行为一条待标注文本,示例:corpus.txt

布洛芬分散片,口服或加水分散后服用。用于成人及12岁以上儿童,推荐剂里为一次0.2~0.4(1~2片)一日3次,或遵医嘱
白加黑(氨酚伪麻美芬片Ⅱ氨麻苯美片),口服。一次1~2片,一日3次(早、中各1~2白片,夜晚1~2片黑片),儿童遵医嘱
氯雷他定片,口服,规格为10mg的氯雷他定片,通常成人及12岁以上儿童1天1次,1次1片
扶他林(双氯芬酸二乙胺乳胶剂),外用。按照痛处面积大小,使用本品适量,轻轻揉搓,使本品渗透皮肤,一日3-4次
七叶洋地黄双苷,外用。用于黄斑变性时,每日3次,每次1滴,滴入眼结膜囊内(近耳侧外眼角)

数据标注

定义标签

Demo简单的定了 "药品名称、通用名、规格、用法、用量、频次"

数据标注

在doccano平台上,创建一个类型为序列标注的标注项目。

定义实体标签类别,上例中需要定义的实体标签有[ 药品名称、通用名、规格、用法、用量、频次 ]。

使用以上定义的标签开始标注数据,下面展示了一个doccano标注示例:

导出数据

标注完成后,在doccano平台上导出文件,并将其重命名为doccano_ext.json后,放入./data目录下

数据转换

在这一步最好换成GPU环境,否则切换到GPU环境后,还需要安装 paddlepaddle 等操作

## 模型微调必须使用GPU
pip install --upgrade paddlepaddle-gpu==2.5.2
pip install --upgrade paddlenlp==2.7.2

doccano

在 AI Studio 环境中创建 data 目录,将 doccano_ext.json 放入data目录中

执行以下脚本进行数据转换,执行后会在./data目录下生成训练/验证/测试集文件。

python doccano.py \
    --doccano_file ./data/doccano_ext.json \
    --task_type ext \
    --save_dir ./data \
    --splits 0.8 0.2 0 \
    --schema_lang ch
# 执行后会在./data目录下生成训练/验证/测试集文件。
[2024-06-26 09:48:38,269] [    INFO] - Save 24 examples to ./data/train.txt.
[2024-06-26 09:48:38,269] [    INFO] - Save 5 examples to ./data/dev.txt.
[2024-06-26 09:48:38,269] [    INFO] - Save 0 examples to ./data/test.txt.

可配置参数说明:

  • doccano_file: 从doccano导出的数据标注文件。
  • save_dir: 训练数据的保存目录,默认存储在data目录下。
  • negative_ratio: 最大负例比例,该参数只对抽取类型任务有效,适当构造负例可提升模型效果。负例数量和实际的标签数量有关,最大负例数量 = negative_ratio * 正例数量。该参数只对训练集有效,默认为5。为了保证评估指标的准确性,验证集和测试集默认构造全负例。
  • splits: 划分数据集时训练集、验证集所占的比例。默认为[0.8, 0.1, 0.1]表示按照8:1:1的比例将数据划分为训练集、验证集和测试集。
  • task_type: 选择任务类型,可选有抽取和分类两种类型的任务。
  • options: 指定分类任务的类别标签,该参数只对分类类型任务有效。默认为["正向", "负向"]。
  • prompt_prefix: 声明分类任务的prompt前缀信息,该参数只对分类类型任务有效。默认为"情感倾向"。
  • is_shuffle: 是否对数据集进行随机打散,默认为True。
  • seed: 随机种子,默认为1000.
  • separator: 实体类别/评价维度与分类标签的分隔符,该参数只对实体/评价维度级分类任务有效。默认为"##"。
  • schema_lang: 选择schema的语言,可选有chen。默认为ch,英文数据集请选择en

备注:

  • 默认情况下 doccano.py 脚本会按照比例将数据划分为 train/dev/test 数据集
  • 每次执行 doccano.py 脚本,将会覆盖已有的同名数据文件
  • 在模型训练阶段我们推荐构造一些负例以提升模型效果,在数据转换阶段我们内置了这一功能。可通过negative_ratio控制自动构造的负样本比例;负样本数量 = negative_ratio * 正样本数量。
  • 对于从doccano导出的文件,默认文件中的每条数据都是经过人工正确标注的。

Label Studio

也可以通过数据标注平台 Label Studio 进行数据标注。 labelstudio2doccano.py 脚本,将 label studio 导出的 JSON 数据文件格式转换成 doccano 导出的数据文件格式,后续的数据转换与模型微调等操作不变。

python labelstudio2doccano.py --labelstudio_file label-studio.json

可配置参数说明:

  • labelstudio_file: label studio 的导出文件路径(仅支持 JSON 格式)。
  • doccano_file: doccano 格式的数据文件保存路径,默认为 "doccano_ext.jsonl"。
  • task_type: 任务类型,可选有抽取("ext")和分类("cls")两种类型的任务,默认为 "ext"。

模型微调

必须使用GPU pip install --upgrade paddlepaddle-gpu==2.5.2推荐使用 Trainer API 对模型进行微调。只需输入模型、数据集等就可以使用 Trainer API 高效快速地进行预训练、微调和模型压缩等任务,可以一键启动多卡训练、混合精度训练、梯度累积、断点重启、日志显示等功能,Trainer API 还针对训练过程的通用训练配置做了封装,比如:优化器、学习率调度等。

使用下面的命令,使用 uie-base 作为预训练模型进行模型微调,将微调后的模型保存至$finetuned_model

单卡启动:

export finetuned_model=./checkpoint/model_best
python finetune.py  \
    --device gpu \
    --logging_steps 10 \
    --save_steps 100 \
    --eval_steps 100 \
    --seed 42 \
    --model_name_or_path uie-base \
    --output_dir $finetuned_model \
    --train_path data/train.txt \
    --dev_path data/dev.txt  \
    --per_device_eval_batch_size 16 \
    --per_device_train_batch_size  16 \
    --num_train_epochs 20 \
    --learning_rate 1e-5 \
    --label_names "start_positions" "end_positions" \
    --do_train \
    --do_eval \
    --do_export \
    --export_model_dir $finetuned_model \
    --overwrite_output_dir \
    --disable_tqdm True \
    --metric_for_best_model eval_f1 \
    --load_best_model_at_end  True \
    --save_total_limit 1

注意:如果模型是跨语言模型 UIE-M,还需设置 --multilingual

可配置参数说明:

  • model_name_or_path:必须,进行 few shot 训练使用的预训练模型。可选择的有 "uie-base"、 "uie-medium", "uie-mini", "uie-micro", "uie-nano", "uie-m-base", "uie-m-large"。
  • multilingual:是否是跨语言模型,用 "uie-m-base", "uie-m-large" 等模型进微调得到的模型也是多语言模型,需要设置为 True;默认为 False。
  • output_dir:必须,模型训练或压缩后保存的模型目录;默认为 None
  • device: 训练设备,可选择 'cpu'、'gpu' 、'npu'其中的一种;默认为 GPU 训练。
  • per_device_train_batch_size:训练集训练过程批处理大小,请结合显存情况进行调整,若出现显存不足,请适当调低这一参数;默认为 32。
  • per_device_eval_batch_size:开发集评测过程批处理大小,请结合显存情况进行调整,若出现显存不足,请适当调低这一参数;默认为 32。
  • learning_rate:训练最大学习率,UIE 推荐设置为 1e-5;默认值为3e-5。
  • num_train_epochs: 训练轮次,使用早停法时可以选择 100;默认为10。
  • logging_steps: 训练过程中日志打印的间隔 steps 数,默认100。
  • save_steps: 训练过程中保存模型 checkpoint 的间隔 steps 数,默认100。
  • seed:全局随机种子,默认为 42。
  • weight_decay:除了所有 bias 和 LayerNorm 权重之外,应用于所有层的权重衰减数值。可选;默认为 0.0;
  • do_train:是否进行微调训练,设置该参数表示进行微调训练,默认不设置。
  • do_eval:是否进行评估,设置该参数表示进行评估。

该示例代码中由于设置了参数 --do_eval,因此在训练完会自动进行评估。

问题处理

找不到 'paddlenlp.trainer'

报找不到模块:ModuleNotFoundError: No module named 'paddlenlp.trainer'

import imp
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/scipy/sparse/sputils.py:16: DeprecationWarning: `np.typeDict` is a deprecated alias for `np.sctypeDict`.
  supported_dtypes = [np.typeDict[x] for x in supported_dtypes]
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/scipy/special/orthogonal.py:81: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
  from numpy import (exp, inf, pi, sqrt, floor, sin, cos, around, int,
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/scipy/linalg/__init__.py:217: DeprecationWarning: The module numpy.dual is deprecated.  Instead of using dual, use the functions directly from numpy or scipy.
  from numpy.dual import register_func
Traceback (most recent call last):
  File "doccano.py", line 25, in <module>
    from paddlenlp.trainer.argparser import strtobool
ModuleNotFoundError: No module named 'paddlenlp.trainer'

pip show paddlepaddle
Name: paddlepaddle
Version: 2.2.2  # 环境中是2.2.2 https://gitee.com/paddlepaddle/PaddleNLP/tree/release/2.8 要求 paddlepaddle >=2.6.0
Summary: Parallel Distributed Deep Learning
Home-page: UNKNOWN
Author: 
Author-email: Paddle-better@baidu.com
License: Apache Software License
Location: /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages
Requires: astor, decorator, numpy, Pillow, protobuf, requests, six
Required-by:

升级Paddlepaddle

pip install --upgrade paddlepaddle-gpu==2.5.2
pip install --upgrade paddlenlp==2.7.2

找不到

ModuleNotFoundError: No module named ‘paddle.fluid.layers.utils

升级 PaddleNLP ,环境中有安装,所以先升下级,其实已经下了源代码。理论上可以卸载 PaddleNLP 直接跑源码的。

ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
streamlit 1.13.0 requires importlib-metadata>=1.4, but you have importlib-metadata 0.23 which is incompatible.
streamlit 1.13.0 requires protobuf!=3.20.2,<4,>=3.12, but you have protobuf 4.24.4 which is incompatible.
flake8 4.0.1 requires importlib-metadata<4.3; python_version < "3.8", but you have importlib-metadata 6.7.0 which is incompatible.
python-lsp-server 1.5.0 requires ujson>=3.0.0, but you have ujson 1.35 which is incompatible.
streamlit 1.13.0 requires protobuf!=3.20.2,<4,>=3.12, but you have protobuf 4.24.4 which is incompatible

根据提示升级

# importlib-metadata
pip install --upgrade importlib-metadata==1.4
# protobuf
pip install --upgrade protobuf>=1.4
pip install --upgrade ujson==3.0.0

GPU

模型微调需使用GPU

Traceback (most recent call last):
  File "finetune.py", line 262, in <module>
    main()
  File "finetune.py", line 98, in main
    paddle.set_device(training_args.device)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/device/__init__.py", line 266, in set_device
    place = _convert_to_place(device)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/device/__init__.py", line 181, in _convert_to_place
    "The device should not be 'gpu', "
ValueError: The device should not be 'gpu', since PaddlePaddle is not compiled with CUDA

在这一步最好换成GPU环境,否则切换到GPU环境后,还需要安装 paddlepaddle 等操作

protobuf==3.20.2

[2024-06-26 11:16:18,349] [    INFO] - All the weights of UIE were initialized from the model checkpoint at uie-base.
If your task is similar to the task the model of the checkpoint was trained on, you can already use UIE for predictions without further training.
[2024-06-26 11:16:18,371] [    INFO] - The global seed is set to 42, local seed is set to 43 and random seed is set to 42.
Traceback (most recent call last):
  File "finetune.py", line 262, in <module>
    main()
  File "finetune.py", line 179, in main
    compute_metrics=compute_metrics,
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlenlp/trainer/trainer.py", line 344, in __init__
    callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlenlp/trainer/trainer_callback.py", line 307, in __init__
    self.add_callback(cb)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlenlp/trainer/trainer_callback.py", line 324, in add_callback
    cb = callback() if isinstance(callback, type) else callback
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlenlp/trainer/integrations.py", line 74, in __init__
    from visualdl import LogWriter
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/visualdl/__init__.py", line 20, in <module>
    from visualdl.writer.writer import LogWriter  # noqa: F401
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/visualdl/writer/writer.py", line 19, in <module>
    from visualdl.writer.record_writer import RecordFileWriter
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/visualdl/writer/record_writer.py", line 18, in <module>
    from visualdl.proto import record_pb2
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/visualdl/proto/record_pb2.py", line 40, in <module>
    serialized_options=None, file=DESCRIPTOR),
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/google/protobuf/descriptor.py", line 561, in __new__
    _message.Message._CheckCalledFromGeneratedFile()
TypeError: Descriptors cannot not be created directly.
If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.
If you cannot immediately regenerate your protos, some other possible workarounds are:
 1. Downgrade the protobuf package to 3.20.x or lower.
 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).
# 降低 Protobuf 版本
pip install --upgrade protobuf==3.20.2

CUDA/cuDNN/paddle

[2024-06-26 11:43:01,264] [   DEBUG] -   Number of trainable parameters = 117,946,370 (per device)
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlenlp/transformers/tokenizer_utils_base.py:2541: FutureWarning: The `max_seq_len` argument is deprecated and will be removed in a future version, please use `max_length` instead.
  FutureWarning,
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlenlp/transformers/tokenizer_utils_base.py:1944: FutureWarning: The `pad_to_max_length` argument is deprecated and will be removed in a future version, use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or use `padding='max_length'` to pad to a max length. In this case, you can give a specific length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the maximal input size of the model (e.g. 512 for Bert).
  FutureWarning,
Traceback (most recent call last):
  File "finetune.py", line 262, in <module>
    main()
  File "finetune.py", line 193, in main
    train_result = trainer.train(resume_from_checkpoint=checkpoint)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlenlp/trainer/trainer.py", line 924, in train
    tr_loss_step = self.training_step(model, inputs)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlenlp/trainer/trainer.py", line 1955, in training_step
    loss = self.compute_loss(model, inputs)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlenlp/trainer/trainer.py", line 1899, in compute_loss
    outputs = model(**inputs)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/layers.py", line 1254, in __call__
    return self.forward(*inputs, **kwargs)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/distributed/parallel.py", line 531, in forward
    outputs = self._layers(*inputs, **kwargs)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/layers.py", line 1254, in __call__
    return self.forward(*inputs, **kwargs)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlenlp/transformers/ernie/modeling.py", line 1275, in forward
    return_dict=return_dict,
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/layers.py", line 1254, in __call__
    return self.forward(*inputs, **kwargs)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlenlp/transformers/ernie/modeling.py", line 363, in forward
    return_dict=return_dict,
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/layers.py", line 1254, in __call__
    return self.forward(*inputs, **kwargs)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlenlp/transformers/model_outputs.py", line 312, in _transformer_encoder_fwd
    output_attentions=output_attentions,
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/layers.py", line 1254, in __call__
    return self.forward(*inputs, **kwargs)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlenlp/transformers/model_outputs.py", line 83, in _transformer_encoder_layer_fwd
    attn_outputs = self.self_attn(src, src, src, src_mask, cache)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/layers.py", line 1254, in __call__
    return self.forward(*inputs, **kwargs)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/transformer.py", line 418, in forward
    q, k, v = self._prepare_qkv(query, key, value, cache)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/transformer.py", line 242, in _prepare_qkv
    q = self.q_proj(query)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/layers.py", line 1254, in __call__
    return self.forward(*inputs, **kwargs)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/common.py", line 175, in forward
    x=input, weight=self.weight, bias=self.bias, name=self.name
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/functional/common.py", line 1842, in linear
    return _C_ops.linear(x, weight, bias)
OSError: (External) CUBLAS error(7). 
  [Hint: 'CUBLAS_STATUS_INVALID_VALUE'.  An unsupported value or parameter was passed to the function (a negative vector size, for example). To correct: ensure that all the parameters being passed have valid values. ] (at ../paddle/phi/backends/gpu/gpu_context.cc:599)
  [operator < linear > error]
aistudio@jupyter-2631487-6335886:~/PaddleNLP-release-2.8/model_zoo/uie$
# 验证PaddlePaddle是否成功安装的函数
aistudio@jupyter-2631487-6335886:~$ python
Python 3.7.4 (default, Aug 13 2019, 20:35:49) 
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import paddle
>>> paddle.utils.run_check()

Python 版本问题 现有环境 是 3.7.4,因为升级了Paddle,但没有升级 Python

PaddlePaddle 2.4.0 => Python 3.7.4

PaddlePaddle 2.4.1+ => Python 3.9.0

解决方法:

不知道咋升级,重新建了个项目 详见:https://www.cnblogs.com/vipsoft/p/18281350

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
机器学习/深度学习 人工智能 自然语言处理
命名实体识别的一点经验与技巧(上)
命名实体识别的一点经验与技巧(上)
199 0
|
数据采集 机器学习/深度学习 自然语言处理
命名实体识别的一点经验与技巧(下)
命名实体识别的一点经验与技巧(下)
120 0
|
存储 自然语言处理 数据处理
信息抽取UIE(二)--小样本快速提升性能(含doccona标注
需求跨领域跨任务:领域之间知识迁移难度高,如通用领域知识很难迁移到垂类领域,垂类领域之间的知识很难相互迁移;存在实体、关系、事件等不同的信息抽取任务需求。 - 定制化程度高:针对实体、关系、事件等不同的信息抽取任务,需要开发不同的模型,开发成本和机器资源消耗都很大。 - 训练数据无或很少:部分领域数据稀缺,难以获取,且领域专业性使得数据标注门槛高。
信息抽取UIE(二)--小样本快速提升性能(含doccona标注
|
5月前
|
人工智能 JSON 自然语言处理
PaddleNLP UIE -- 药品说明书信息抽取(名称、规格、用法、用量)
PaddleNLP UIE -- 药品说明书信息抽取(名称、规格、用法、用量)
76 5
|
自然语言处理 算法 机器人
PaddleNLP通用信息抽取技术UIE【一】产业应用实例:信息抽取{实体关系抽取、中文分词、精准实体标。情感分析等}、文本纠错、问答系统、闲聊机器人、定制训练
PaddleNLP通用信息抽取技术UIE【一】产业应用实例:信息抽取{实体关系抽取、中文分词、精准实体标。情感分析等}、文本纠错、问答系统、闲聊机器人、定制训练
PaddleNLP通用信息抽取技术UIE【一】产业应用实例:信息抽取{实体关系抽取、中文分词、精准实体标。情感分析等}、文本纠错、问答系统、闲聊机器人、定制训练
|
2月前
|
自然语言处理
有关“RaNER命名实体识别-中文-新闻领域-base模型的命名实体识”的个人小建议
当新闻中出现不具体人名(如范某)时,建议模型能正确提取;对于含名词的非特殊名称(如“七块熹平石经”),建议不提取;此外,模型应解决去重问题,或给出词频。
|
5月前
|
存储 JSON 自然语言处理
数据标注工具 doccano | 命名实体识别(Named Entity Recognition,简称NER)
数据标注工具 doccano | 命名实体识别(Named Entity Recognition,简称NER)
79 1
|
8月前
|
机器学习/深度学习 缓存 文字识别
印刷文字识别产品使用合集之标注阶段设定了两个独立的字段,但在返回的信息中却合并成了一个字段如何解决
印刷文字识别(Optical Character Recognition, OCR)技术能够将图片、扫描文档或 PDF 中的印刷文字转化为可编辑和可搜索的数据。这项技术广泛应用于多个领域,以提高工作效率、促进信息数字化。以下是一些印刷文字识别产品使用的典型场景合集。
|
自然语言处理 API 数据处理
面向低资源和增量类型的命名实体识别挑战赛PaddleNLP解决方案
面向低资源和增量类型的命名实体识别挑战赛PaddleNLP解决方案
107 0
|
机器学习/深度学习 人工智能 自然语言处理
深度学习应用篇-自然语言处理-命名实体识别[9]:BiLSTM+CRF实现命名实体识别、实体、关系、属性抽取实战项目合集(含智能标注)
深度学习应用篇-自然语言处理-命名实体识别[9]:BiLSTM+CRF实现命名实体识别、实体、关系、属性抽取实战项目合集(含智能标注)
深度学习应用篇-自然语言处理-命名实体识别[9]:BiLSTM+CRF实现命名实体识别、实体、关系、属性抽取实战项目合集(含智能标注)

热门文章

最新文章