【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络

简介: 【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络

一、引言

要深入了解大模型底层原理,先要能手撸transformer模型结构,在这之前,pytorch、tensorflow等深度学习框架必须掌握,之前做深度学习时用的tensorflow,做aigc之后接触pytorch多一些,今天写一篇pytorch的入门文章吧,感兴趣的可以一起聊聊。

二、pytorch介绍

2.1 pytorch历史

PyTorch由facebook人工智能研究院研发,2017年1月被提出,是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。PyTorch既可以看作加入了GPU支持的numpy,同时也可以看成一个拥有自动求导功能的强大的深度神经网络。

PyTorch的前身是Torch,其底层和Torch框架一样,但是使用Python重新写了很多内容,不仅更加灵活,支持动态图,而且提供了Python接口。它是由Torch7团队开发,是一个以Python优先的深度学习框架,不仅能够实现强大的GPU加速,同时还支持动态神经网络。

2.2 pytorch特点

Pytorch是一个python包,提供两个高级功能:

2.2.1 支持GPU加速的张量计算库

张量(tensor):可以理解为多位数组,是Pytorch的基本计算单元,Pytorch的特性就是可以基于GPU快速完成张量的计算,包括求导、切片、索引、数学运算、线性代数、归约等

import torch
import torch.nn.functional as F
 
# 1. 张量的创建
x = torch.tensor([[1, 2, 3], [4, 5, 6]])
y = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(x) #tensor([[1, 2, 3],[4, 5, 6]])
print(y) #tensor([[1, 2, 3],[4, 5, 6]])
 
# 2. 张量的运算
z=x+y
print(z) #tensor([[2, 4, 6],[8, 10, 12]])
 
# 3. 张量的自动求导
x = torch.tensor(3.0, requires_grad=True)
print(x.grad) #None
 
y = x**2 
y.backward()
print(x.grad) #tensor(6.)

2.2.2 包含自动求导系统的动态图机制

Pytorch提供了一种独一无二的构建神经网络的方式:动态图机制

不同于TensorFlow、Caffe、CNTK等静态神经网络:网络构建一次反复使用,如果修改了网络不得不重头开始。

在Pytorch中,使用了一种“反向模式自动微分的技术(reverse-mode auto-differentiation)”,允许在零延时或开销的情况下任意更改网络。

2.3 pytorch安装

这里建议大家采用conda创建环境,采用pip管理pytorch包

1.建立名为pytrain,python版本为3.11的conda环境

conda create -n pytrain python=3.11
conda activate pytrain

 

2.采用pip下载torch和torchvision包

pip install torch  torchvision torchmetrics  -i https://mirrors.cloud.tencent.com/pypi/simple

这里未指定版本,默认下载最新版本torch-2.3.0、torchvision-0.18.0以及其他一堆依赖。

三、pytorch实战

动手实现一个三层DNN网络:

3.1 引入依赖的python库

这里主要是torch、torch.nn网络、torch.optim优化器、torch.utils.data数据处理等

import torch # 导入pytorch
import torch.nn as nn # 神经网络模块
import torch.optim as optim # 优化器模块
from torch.utils.data import DataLoader, TensorDataset # 数据集模块

3.2 定义三层神经网络

引入nn.Module类,编写构造函数定义网络结构,编写前向传播过程定义激活函数。

  1. 通过继承torch.nn.Module类,对神经网络层进行构造,Module类在pytorch中非常重要,他是所有神经网络层和模型的基类。
  2. 定义模型构造函数__init__:在这里定义网络结构,输入为每一层的节点数,采用torch.nn.Linear这个类,定义全连接线性层,进行线性变换,通过第一层节点输入数据*权重矩阵(n * [n,k] = k),加偏置项,再配以激活函数得到下一层的输入。
  3. 定义前向传播forward过程:采用relu、sigmod、tanh等激活函数,对每一层计算得到的原始值归一化输出。一般建议采用relu。sigmod的导数在0、1极值附近会接近于0,产生“梯度消失”的问题,较长的精度会导致训练非常缓慢,甚至无法收敛。relu导数一直为1,更好的解决了梯度消失问题。
# 定义三层神经网络模型
class ThreeLayerDNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(ThreeLayerDNN, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)  # 第一层全连接层
        self.fc2 = nn.Linear(hidden_size, hidden_size)  # 第二层全连接层
        self.fc3 = nn.Linear(hidden_size, output_size)  # 输出层
        self.sigmoid = nn.Sigmoid() # 二分类输出层使用Sigmoid激活函数
 
    def forward(self, x):
        x = torch.relu(self.fc1(x))  # 使用ReLU激活函数
        x = torch.relu(self.fc2(x))  # 中间层也使用ReLU激活函数
        x = torch.sigmoid(self.fc3(x)) # 二分类输出层使用Sigmoid激活函数
        return x

3.3 训练数据准备

  1. 定义输入的特征数、隐层节点数、输出类别数,样本数,
  2. 采用torch.randn、torch.randint函数构造训练数据,
  3. 采用TensorDataset、DataLoader类分别进行张量数据集构建以及数据导入
# 数据准备
input_size = 1000  # 输入特征数
hidden_size =  512 # 隐藏层节点数
output_size = 2  # 输出类别数
num_samples = 1000  # 样本数
# 示例数据,实际应用中应替换为真实数据
X_train = torch.randn(num_samples, input_size) 
y_train = torch.randint(0, output_size, (num_samples,))
 
# 数据加载
dataset = TensorDataset(X_train, y_train)
data_loader = DataLoader(dataset, batch_size=32, shuffle=True)

3.4 实例化模型、定义损失函数与优化器

损失函数与优化器是机器学习的重要概念,先看代码,nn来自于torch.nn,optim来自于torch.optim,均为torch封装的工具类

# 实例化模型
model = ThreeLayerDNN(input_size, hidden_size, output_size)
 
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 适合分类问题
optimizer = optim.Adam(model.parameters(), lr=0.001)

损失函数:用于衡量模型预测值与真实值的差距,是模型优化的目标。常见损失函数为

  • 均方误差损失(MSE):用于回归问题,衡量预测值与真实值之间的平方差的平均值。
  • 交叉熵损失(Cross Entropy Loss):用于分类问题,衡量预测概率分布与真实分布之间的差距。
  • 二进制交叉熵损失(Binary Cross-Entropy Loss):是一种用于二分类任务的损失函数,通常用于测量模型的二分类输出与实际标签之间的差距,不仅仅应用于0/1两个数,0-1之间也都能学习

优化器:优化算法用于调整模型参数,以最小化损失函数。常见的优化算法为

  • 随机梯度下降(SGD):通过对每个训练样本计算梯度并更新参数,计算简单,但可能会陷入局部最优值。
  • Adam:结合了动量和自适应学习率调整的方法,能够快速收敛且稳定性高,广泛应用于各种深度学习任务。

3.5 启动训练,迭代收敛

模型训练可以简单理解为一个“双层for循环”

第一层for循环:迭代的轮数,这里是10轮

       第二层for循环:针对每一条样本,前、后向传播迭代一遍网络,1000条样本就迭代1000次。

所以针对10轮迭代,每轮1000条样本,要迭代网络10*1000=10000次。

# 训练循环
num_epochs = 10
for epoch in range(num_epochs):
    model.train()  # 设置为训练模式
    running_loss = 0.0
    for i, (inputs, labels) in enumerate(data_loader, 0):
        optimizer.zero_grad()  # 清零梯度
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()  # 反向传播
        optimizer.step()  # 更新权重
 
        running_loss += loss.item()
    print(f'Epoch {epoch + 1}, Loss: {running_loss / (i + 1)}')
 
print('Training finished.')

运行后可以看到loss逐步收敛:

3.6 模型评估

通过引入torchmetrics库对模型效果进行评估,主要分为以下几步

  1. 构造测试集数据;
  2. 测试集数据加载;
  3. 将模型切至评估模式;
  4. 初始化模型准确率与召回率的计算器;
  5. 循环测试样本,更新准确率与召回率计算器;
  6. 打印输出
import torchmetrics # 导入torchmetrics
 
test_num_samples = 200  # 测试样本数
test_X_train = torch.randn(test_num_samples, input_size) 
test_y_train = torch.randint(0, output_size, (test_num_samples,))
 
# 数据加载
test_dataset = TensorDataset(test_X_train,test_y_train)
test_data_loader = DataLoader(test_dataset, batch_size=32, shuffle=True)
 
# 在模型训练完成后进行评估
# 首先,我们需要确保模型在评估模式下
model.eval()
 
# 初始化准确率和召回率的计算器
accuracy = torchmetrics.Accuracy(task="multiclass", num_classes=output_size)
recall = torchmetrics.Recall(task="multiclass", num_classes=output_size)
 
with torch.no_grad():  # 确保在评估时不进行梯度计算
    for inputs, labels in test_data_loader:
        outputs = model(inputs)
        preds = torch.softmax(outputs, dim=1)
        # 更新指标计算器
        accuracy.update(preds, labels)
        recall.update(preds, labels)
 
# 打印准确率和召回率
print(f'Accuracy: {accuracy.compute():.4f}')
print(f'Recall: {recall.compute():.4f}')
 
print('Evaluation finished.')

运行后,可以输出模型的准确率与召回率,由于采用随机生成的测试数据且迭代轮数较少,具体数值不错参考,可以根据自己需要丰富数据。

3.7 可以直接跑的代码

附可以直接运行的代码,先跑起来,再一行行研究!

import torch # 导入pytorch
import torch.nn as nn # 神经网络模块
import torch.optim as optim # 优化器模块
from torch.utils.data import DataLoader, TensorDataset # 数据集模块
 
 
# 定义三层神经网络模型
class ThreeLayerDNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(ThreeLayerDNN, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)  # 第一层全连接层
        self.fc2 = nn.Linear(hidden_size, hidden_size)  # 第二层全连接层
        self.fc3 = nn.Linear(hidden_size, output_size)  # 输出层
        self.sigmoid = nn.Sigmoid() # 二分类输出层使用Sigmoid激活函数
 
    def forward(self, x):
        x = torch.relu(self.fc1(x))  # 使用ReLU激活函数
        x = torch.relu(self.fc2(x))  # 中间层也使用ReLU激活函数
        x = torch.sigmoid(self.fc3(x)) # 二分类输出层使用Sigmoid激活函数
        return x
 
# 数据准备
input_size = 1000  # 输入特征数
hidden_size =  512 # 隐藏层节点数
output_size = 2  # 输出类别数
num_samples = 1000  # 样本数
# 示例数据,实际应用中应替换为真实数据
X_train = torch.randn(num_samples, input_size) 
y_train = torch.randint(0, output_size, (num_samples,))
 
# 数据加载
dataset = TensorDataset(X_train, y_train)
data_loader = DataLoader(dataset, batch_size=32, shuffle=True)
 
# 实例化模型
model = ThreeLayerDNN(input_size, hidden_size, output_size)
 
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 适合分类问题
optimizer = optim.Adam(model.parameters(), lr=0.001)
 
# 训练循环
num_epochs = 10
for epoch in range(num_epochs):
    model.train()  # 设置为训练模式
    running_loss = 0.0
    for i, (inputs, labels) in enumerate(data_loader, 0):
        optimizer.zero_grad()  # 清零梯度
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()  # 反向传播
        optimizer.step()  # 更新权重
 
        running_loss += loss.item()
    print(f'Epoch {epoch + 1}, Loss: {running_loss / len(data_loader)}')
 
print('Training finished.')
 
#for param in model.parameters():
#    print(param.data)
 
 
import torchmetrics # 导入torchmetrics
 
test_num_samples = 200  # 测试样本数
test_X_train = torch.randn(test_num_samples, input_size) 
test_y_train = torch.randint(0, output_size, (test_num_samples,))
 
# 数据加载
test_dataset = TensorDataset(test_X_train,test_y_train)
test_data_loader = DataLoader(test_dataset, batch_size=32, shuffle=True)
 
# 在模型训练完成后进行评估
# 首先,我们需要确保模型在评估模式下
model.eval()
 
# 初始化准确率和召回率的计算器
accuracy = torchmetrics.Accuracy(task="multiclass", num_classes=output_size)
recall = torchmetrics.Recall(task="multiclass", num_classes=output_size)
 
with torch.no_grad():  # 确保在评估时不进行梯度计算
    for inputs, labels in test_data_loader:
        outputs = model(inputs)
        # 将输出通过softmax转换为概率分布(虽然CrossEntropyLoss内部做了,但这里为了计算指标明确显示)
        preds = torch.softmax(outputs, dim=1)
        # 更新指标计算器
        accuracy.update(preds, labels)
        recall.update(preds, labels)
 
# 打印准确率和召回率
print(f'Accuracy: {accuracy.compute():.4f}')
print(f'Recall: {recall.compute():.4f}')
 
print('Evaluation finished.')

四、总结

本文先对pytorch深度学习框架历史、特点及安装方法进行介绍,接下来基于pytorch带读者一步步开发一个简单的三层神经网络程序,最后附可执行的代码供读者进行测试学习。个人感觉网络结构部分比tensorflow稍微抽象一点点,不过各有优劣吧,初学者最好对比着学习。下一篇写tensorflow吧,一起讲了大家可以对比着看。喜欢的话期待您的关注、点赞、收藏,您的互动是对我最大的鼓励!

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 PyTorch
PyTorch深度学习 ? 带你从入门到精通!!!
🌟 蒋星熠Jaxonic,深度学习探索者。三年深耕PyTorch,从基础到部署,分享模型构建、GPU加速、TorchScript优化及PyTorch 2.0新特性,助力AI开发者高效进阶。
PyTorch深度学习 ? 带你从入门到精通!!!
|
2月前
|
机器学习/深度学习 PyTorch TensorFlow
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic,深度学习探索者。深耕TensorFlow与PyTorch,分享框架对比、性能优化与实战经验,助力技术进阶。
|
2月前
|
监控 Linux 测试技术
C++零拷贝网络编程实战:从理论到生产环境的性能优化之路
🌟 蒋星熠Jaxonic,技术宇宙中的星际旅人。深耕C++与零拷贝网络编程,从sendfile到DPDK,实战优化服务器性能,毫秒级响应、CPU降60%。分享架构思维,共探代码星辰大海!
|
3月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
203 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
2月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
3月前
|
机器学习/深度学习 人工智能 算法
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic带你深入卷积神经网络(CNN)核心技术,从生物启发到数学原理,详解ResNet、注意力机制与模型优化,探索视觉智能的演进之路。
427 11
|
3月前
|
机器学习/深度学习 算法 PyTorch
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
102 1
|
3月前
|
机器学习/深度学习 算法 PyTorch
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
181 0
|
11月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
442 22
|
8月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
1093 64
计算机视觉五大技术——深度学习在图像处理中的应用

热门文章

最新文章