基于和声搜索算法(Harmony Search,HS)的机器设备工作最优调度方案求解matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 通过和声搜索算法(HS)实现多机器并行工作调度,以最小化任务完成时间。在MATLAB2022a环境下,不仅输出了工作调度甘特图,还展示了算法适应度值的收敛曲线。HS算法模拟音乐家即兴创作过程,随机生成初始解(和声库),并通过选择、微调生成新解,不断迭代直至获得最优调度方案。参数包括和声库大小、记忆考虑率、音调微调率及带宽。编码策略将任务与设备分配映射为和声,目标是最小化完成时间,同时确保满足各种约束条件。

1.程序功能描述
通过和声搜索算法(Harmony Search,HS)实现机器设备工作时间调度,使得多个机器进行并行工作,使得最终完成任务的时间达到最小。仿真结果输出工作调度甘特图以及和声搜索算法的适应度值收敛曲线。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
1.jpeg
2.jpeg
3.jpeg
4.jpeg

3.核心程序

```% 对于每一次迭代
for it = 1:Iteration
% 初始化新的和声数组
X_HW = repmat(HW_struct, Num_HM, 1);
% 创建新的和声
for k = 1:Num_HM
% 创建新的和声位置
X_HW(k).Position = unifrnd(Xmin, Xmax, VarSize);
for j = 1:Xnum
if rand <= CR_HM
% 如果随机数小于HMCR
i = randi([1 Size_HM]);% 使用和声记忆
X_HW(k).Position(j) = Harmony(i).Position(j);
end
% 音高调整
if rand <= PAR_HM% 如果随机数小于PAR
DELTA = FW*randn(); % 高斯分布
X_HW(k).Position(j) = X_HW(k).Position(j)+DELTA;
end
end
% 应用变量限制
X_HW(k).Position = max(X_HW(k).Position, Xmin);
X_HW(k).Position = min(X_HW(k).Position, Xmax);
% 评估
[X_HW(k).Cost X_HW(k).Sol] = fits(X_HW(k).Position);
end
% 合并和声记忆和新的和声
Harmony = [Harmony
X_HW];
% 对和声记忆进行排序
[~, II] = sort([Harmony.Cost]);
Harmony = Harmony(II);
% 截断多余的和声
Harmony = Harmony(1:Size_HM);
% 更新找到的最佳解
BestX = Harmony(1);
% 存储找到的最佳代价值
BestY(it) = BestX.Cost;

figure(1);
func_draw(BestX.Sol,JSPm);
end

figure;
plot(1:5:Iteration,BestY(1:5:end),'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('迭代次数');
ylabel('适应度值');
0007

```

4.本算法原理
随着工业4.0时代的到来,机器设备的工作调度问题变得越来越重要。合理的调度方案能够提高设备利用率,降低成本,提升企业效益。然而,由于设备数量、任务数量以及约束条件的复杂性,求解最优调度方案成为了一个NP难问题。为此,本文提出使用和声搜索算法求解该问题。

4.1、和声搜索算法
和声搜索算法是一种启发式优化算法,模拟了音乐演奏中和声调整的过程。算法将问题的解看作是和声,通过不断地调整和声中的音符(变量),来达到优化目标函数的目的。算法主要包括以下几个步骤:

1.初始化和声库:随机生成一组初始解,构成初始和声库。

cc1054b58e39c6786714a355adceb809_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.生成新和声:根据某种策略(如随机选择、记忆考虑等)从和声库中选择一个或多个和声,对其进行微调,生成新的和声。

6728f74530d0037da257cbf1b2743c08_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.更新和声库:如果新和声优于和声库中的最差和声,则替换之,否则保留原和声库。
95d1d8ab37aa9b1b10fb6c88bf72c2ef_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

4.判断是否达到终止条件:如果达到预设的迭代次数或解的优度达到预设阈值,则算法终止,否则返回步骤2。

主要涉及到的参数如下所示:
和声库大小(HMS):表示和声库中和声的数量;
记忆考虑率(HMCR):表示从和声库中选择和声的概率;
音调微调率(PAR):表示对新和声进行微调的概率;
音调微调带宽(BW):表示微调的幅度。

4.2、基于HS的机器设备工作最优调度方案求解
在求解机器设备工作最优调度方案时,我们首先需要定义问题的编码方式、目标函数以及约束条件。接着,根据HS算法的原理,设计合适的和声表示、生成策略、更新策略以及终止条件。具体流程如下:

编码方式:每个和声代表一个调度方案,其中的音符对应任务的调度顺序、设备的分配等。
目标函数:根据调度方案计算总成本(如时间、能耗等),作为目标函数。我们的目标是最小化该函数。
约束条件:包括设备的工作时间、任务的时间限制等。不满足约束条件的和声将被视为无效。
和声生成策略:结合设备的工作特性和任务需求,设计合适的策略从已有和声中生成新的和声。例如,可以选择部分任务进行顺序调整,或者重新分配某个任务到不同的设备等。
和声更新策略:当新生成的和声满足约束条件且优于库中最差和声时,用其替换库中最差和声。同时,为了保持解的多样性,也可以引入一定的随机性。
终止条件:设定最大迭代次数或者目标函数值改进小于某个阈值作为终止条件。

相关文章
|
15天前
|
传感器 人工智能 监控
智慧电厂AI算法方案
智慧电厂AI算法方案通过深度学习和机器学习技术,实现设备故障预测、发电运行优化、安全监控和环保管理。方案涵盖平台层、展现层、应用层和基础层,具备精准诊断、智能优化、全方位监控等优势,助力电厂提升效率、降低成本、保障安全和环保合规。
智慧电厂AI算法方案
|
13天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
21天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
15天前
|
传感器 人工智能 监控
智慧化工厂AI算法方案
智慧化工厂AI算法方案针对化工行业生产过程中的安全风险、效率瓶颈、环保压力和数据管理不足等问题,通过深度学习、大数据分析等技术,实现生产过程的实时监控与优化、设备故障预测与维护、安全预警与应急响应、环保监测与治理优化,全面提升工厂的智能化水平和管理效能。
智慧化工厂AI算法方案
|
22天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
1天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
22天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
23天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
22天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
41 3