如何做好舆情大数据分析工作

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 舆情大数据分析是一项复杂而系统的工作,它涉及舆情监测、数据汇总和过滤分类、数据分析、结果呈现与报告撰写以及反馈等多个工作流程。因此,对于政企单位来说,如何做好舆情大数据分析工作是个难题。下面,本文就来详细为各位阐述舆情大数据分析工作内容以及如何做好舆情大数据分析工作?

舆情大数据分析是一项复杂而系统的工作,它涉及舆情监测、数据汇总和过滤分类、数据分析、结果呈现与报告撰写以及反馈等多个工作流程。因此,对于政企单位来说,如何做好舆情大数据分析工作是个难题。下面,本文就来详细为各位阐述舆情大数据分析工作内容以及如何做好舆情大数据分析工作?

舆情大数据分析工作内容有哪些

一般来说,大数据舆情分析工作内容首先是舆情监测,这一过程需要借助先进的网络技术,如像蚁坊软件这类人工智能舆情监测系统,实现全网信息的自动实时监测。其次,对数据进行分类、标注和归档,同样这一过程需要运用专业的数据处理工具和技术,确保数据的质量和一致性。再者,在清洗整理好的数据基础上,进行舆情数据分析与挖掘。最后,将分析结果以报告的形式呈现给决策者。

如何做好舆情大数据分析工作

1.构建全面的数据收集体系

舆情大数据分析的基础是数据,因此构建一个全面的数据收集体系至关重要。如通过选择合适的大数据舆情监测系统,实时全天自动监测舆情,以确保数据的全面性和时效性。像蚁坊软件的舆情监测软件既可以覆盖广泛的信息源,又能够实时自动更新数据。

2.精细化的数据筛选

收集到的原始数据往往存在大量冗余、噪声和错误,因此需要进行精细化的数据过滤。这包括去除重复数据、填补缺失值、纠正错误数据等。在处理过程中,要注重数据的准确性和一致性,确保分析结果的可靠性。

3.深入的数据分析与挖掘

数据分析与挖掘是舆情大数据分析的核心环节,如可通过利用蚁坊软件的大数据舆情分析工具,自动对舆情数据进行深入挖掘分析,如公众的讨论热点、情感倾向、传播热度、传播层级、传播影响力等,并自动生成一份完整的舆情分析报告,为相关决策制定提供更加科学的依据。(相关大数据舆情分析系统免费试用入口

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
2月前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
162 2
|
3月前
|
SQL 消息中间件 分布式计算
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
93 5
|
19天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
105 15
|
25天前
|
SQL 分布式计算 DataWorks
DataWorks产品测评|基于DataWorks和MaxCompute产品组合实现用户画像分析
本文介绍了如何使用DataWorks和MaxCompute产品组合实现用户画像分析。首先,通过阿里云官网开通DataWorks服务并创建资源组,接着创建MaxCompute项目和数据源。随后,利用DataWorks的数据集成和数据开发模块,将业务数据同步至MaxCompute,并通过ODPS SQL完成用户画像的数据加工,最终将结果写入`ads_user_info_1d`表。文章详细记录了每一步的操作过程,包括任务开发、运行、运维操作和资源释放,帮助读者顺利完成用户画像分析。此外,还指出了文档中的一些不一致之处,并提供了相应的解决方法。
|
23天前
|
分布式计算 DataWorks 搜索推荐
用户画像分析(MaxCompute简化版)
通过本教程,您可以了解如何使用DataWorks和MaxCompute产品组合进行数仓开发与分析,并通过案例体验DataWorks数据集成、数据开发和运维中心模块的相关能力。
|
2月前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
104 4
|
2月前
|
关系型数据库 分布式数据库 数据库
PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具
在数字化时代,企业面对海量数据的挑战,PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具。它不仅支持高速数据读写,还通过数据分区、索引优化等策略提升分析效率,适用于电商、金融等多个行业,助力企业精准决策。
37 4
|
2月前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
266 5
|
2月前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
254 14
|
2月前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
178 2

相关产品

  • 云原生大数据计算服务 MaxCompute
  • 下一篇
    开通oss服务