实时计算 Flink版产品使用问题之从检查点重启任务,怎么在YAML配置文件中添加检查点的路径

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:使用flink native k8s的nodeport模式,能指定暴露的port吗?

使用flink native k8s的nodeport模式,能指定暴露的port吗?



参考答案:

在Flink中,通过使用NodePort模式暴露服务,可以指定要暴露的端口。NodePort模式允许你将Flink服务从集群内部访问扩展到集群外部,通过为每个节点上的特定端口映射到一个公共访问端口来实现。

在Flink的NodePort模式下,你可以在Flink的配置文件(例如flink-conf.yaml)中指定要暴露的端口范围。具体来说,你可以设置taskmanager.network.port属性来指定TaskManager节点上用于与Flink JobManager通信的端口。同样,你还可以设置jobmanager.network.port属性来指定JobManager节点的端口。

一旦你配置了端口范围,Flink会为每个节点选择一个端口并在该端口上启动服务。然后,Flink会将每个节点的端口映射到一个公共访问的NodePort上,以便从集群外部访问Flink服务。

请注意,为了确保集群外部能够访问Flink服务,你还需要正确配置网络策略和防火墙规则,以便允许外部流量通过NodePort访问Flink服务。

使用Flink的NodePort模式时,你可以指定要暴露的端口范围,并使用该模式将Flink服务暴露给集群外部的客户端访问。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592487



问题二:Flink 2023 的PPT能下载吗?

Flink 2023 的PPT能下载吗?网页看 太小了 放大 又很模糊。



参考答案:

可以登录网页版观看:https://flink-forward.org.cn/

目前只有主会场演讲直播回放和分论坛演讲回放,PPT暂时还没有放出来2023版本,不过往年的可以通过历届活动点击PPT获取



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592484



问题三:用这两个flink run的参数提交任务到集群上,为什么在管理页面显示container数量不一样?

我用这两个flink run的参数提交同一个任务到yarn集群上,在yarn的管理页面显示启动的container数量不一样。为什么?实际应该用那个呢?bin/flink run -t yarn-per-job -ys 2 -yjm 1G -ytm 4G -p 5 -sae

bin/flink run -t yarn-per-job -p 5 -sae -Djobmanager.memory.process.size=1024mb -Dtaskmanager.memory.process.size=4096mb -Dtaskmanager.numberOfTaskSlots=2



参考答案:

楼主你好,在使用Flink提交任务到YARN集群上时,容器数量的不一致可能是参数配置不一致造成的,你提供的两个flink run命令中,有一些参数是不同的,比如-ys-yjm参数,这些参数会影响任务运行时的资源分配和容器数量,所以请确保两次提交任务时的参数配置一致,才能得到一致的容器数量。

还有就是任务图的拓扑结构,Flink任务图的拓扑结构可能会导致不同的容器需求,如果任务的操作符数量或节点之间的依赖关系不同,那么为了满足任务的需求,启动的容器数量可能会不一致。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592482



问题四:Flink CDC里我用flink sql从kafka订阅canaljson插入数据,这是为什么?

Flink CDC里我用flink sql从kafka订阅canaljson插入数据,如果这个数据插入后,重启任务,然后发送canaljson无法删除,不重启的话就可以,为什么?



参考答案:

Flink CDC 从 Kafka 订阅 Canal JSON 格式的数据并将其插入到目标表中,如果在数据插入后重启 Flink 任务,发现无法正确处理 Canal JSON 中的 DELETE 操作,而不停止任务则可以正常处理,这个问题可能与 Flink SQL 的状态管理和 Checkpoint 机制有关。

Flink CDC 在处理 CDC 数据时,会依赖其状态来追踪和处理数据库的变更事件(包括 INSERT、UPDATE 和 DELETE)。当你重启任务时,如果没有正确设置 Checkpoint 或 Savepoint,Flink 任务重启后会从 Kafka 最新的偏移量开始消费,而忽略了之前已经消费并处理过的 DELETE 事件,因此会出现 DELETE 操作无法执行的情况。

要解决这个问题,可以采取以下措施:

  1. 启用 Checkpoint:确保你的 Flink 任务启用了 Checkpoint,并且设置合理的 Checkpoint 间隔。这样在任务重启时,可以从最近的 Checkpoint 恢复状态,继续处理 Kafka 中未消费完的数据。
CREATE TABLE kafka_source (
  ...
) WITH (
  'connector' = 'kafka',
  ...
  'enable.startup.mode' = 'latest-offset',  -- 或者设置为 'group-offsets' 并确保消费组一致
  'properties.checkpoint.interval' = '60000',  -- 根据实际情况设置Checkpoint间隔
  ...
);
  1. 使用 Savepoint:在任务停止前先触发一个 Savepoint,然后在重启任务时从 Savepoint 恢复,这样可以精确地恢复到任务停止前的状态。
  2. 检查幂等性:确保下游接收系统的数据处理逻辑具有幂等性,即使同一个 DELETE 事件被处理多次,也能保证最终数据的一致性。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592411



问题五:在Flink CDC中要从检查点重启任务,如何在YAML配置文件中添加检查点的路径?

在Flink CDC中要从检查点重启任务,如何在YAML配置文件中添加检查点的路径?是否有相关文档或方法可以参考来重启Flink CDC 3.0的任务?具体怎样使用命令bin/flink run -s进行重启,应该指定哪个JAR包?



参考答案:

在 flink-conf 里设置 execution.savepoint.path 指定 savepoint 路径。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592409

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1544 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
5天前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
112 0
Flink CDC 在阿里云实时计算Flink版的云上实践
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
186 56
|
19天前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
2月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
3月前
|
数据可视化 大数据 数据处理
评测报告:实时计算Flink版产品体验
实时计算Flink版提供了丰富的文档和产品引导,帮助初学者快速上手。其强大的实时数据处理能力和多数据源支持,满足了大部分业务需求。但在高级功能、性能优化和用户界面方面仍有改进空间。建议增加更多自定义处理函数、数据可视化工具,并优化用户界面,增强社区互动,以提升整体用户体验和竞争力。
56 2
|
3月前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
100 1
|
3月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
3月前
|
运维 监控 Serverless
阿里云实时计算Flink版评测报告
阿里云实时计算Flink版是一款全托管的Serverless实时流处理服务,基于Apache Flink构建,提供企业级增值功能。本文从稳定性、性能、开发运维、安全性和成本效益等方面全面评测该产品,展示其在实时数据处理中的卓越表现和高投资回报率。
|
3月前
|
存储 运维 监控
实时计算Flink版在稳定性、性能、开发运维、安全能力等等跟其他引擎及自建Flink集群比较。
实时计算Flink版在稳定性、性能、开发运维和安全能力等方面表现出色。其自研的高性能状态存储引擎GeminiStateBackend显著提升了作业稳定性,状态管理优化使性能提升40%以上。核心性能较开源Flink提升2-3倍,资源利用率提高100%。提供一站式开发管理、自动化运维和丰富的监控告警功能,支持多语言开发和智能调优。安全方面,具备访问控制、高可用保障和全链路容错能力,确保企业级应用的安全与稳定。
59 0

相关产品

  • 实时计算 Flink版