Transformers 4.37 中文文档(二十五)(5)

简介: Transformers 4.37 中文文档(二十五)

Transformers 4.37 中文文档(二十五)(4)https://developer.aliyun.com/article/1563795


BloomForSequenceClassification

class transformers.BloomForSequenceClassification

<来源>

( config: BloomConfig )

参数

  • config(BloomConfig)- 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

Bloom 模型变压器,顶部带有序列分类头(线性层)。

BloomForSequenceClassification 使用最后一个标记进行分类,就像其他因果模型(例如 GPT-1)一样。

由于它对最后一个标记进行分类,需要知道最后一个标记的位置。如果配置中定义了pad_token_id,则在每行中找到不是填充标记的最后一个标记。如果未定义pad_token_id,则在批处理的每行中简单地取最后一个值。当传递inputs_embeds而不是input_ids时,无法猜测填充标记,因此执行相同操作(取批处理的每行中的最后一个值)。

该模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入等)。

该模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None past_key_values: Optional = None attention_mask: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None **deprecated_arguments ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutputWithPast or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, input_ids_length)torch.LongTensor)- 如果past_key_valuesNone,则input_ids_length = sequence_length,否则为past_key_values[0][0].shape[2](输入过去键值状态的序列长度)。词汇表中输入序列标记的索引。
    如果使用了past_key_values,则只应将未计算其过去的input_ids作为input_ids传递。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • past_key_values (Tuple[Tuple[torch.Tensor]],长度为 config.n_layers) — 包含由模型计算的预计算隐藏状态(注意力块中的键和值)(请参阅下面的 past_key_values 输出)。可用于加速顺序解码。将其过去传递给此模型的 input_ids 不应作为 input_ids 传递,因为它们已经计算过。past_key_values 的每个元素都是一个元组(past_key, past_value):
  • past_key: [batch_size * num_heads, head_dim, kv_length]
  • past_value: [batch_size * num_heads, kv_length, head_dim]
  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选定在 [0, 1]
  • 对于未被“掩码”的标记为 1。
  • 对于被“掩码”的标记为 0。
  • 什么是注意力掩码?
  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定头部失效的掩码。掩码值选定在 [0, 1]
  • 1 表示头部未被“掩码”。
  • 0 表示头部被“掩码”。
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选择直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制权,以便将 input_ids 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
    如果使用 past_key_values,则可以选择仅输入最后的 inputs_embeds(请参阅 past_key_values)。
  • use_cache (bool可选) — 如果设置为 True,则返回 past_key_values 键值状态,并可用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

包含各种元素的 transformers.modeling_outputs.SequenceClassifierOutputWithPasttorch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),具体取决于配置(BloomConfig)和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 分类(如果 config.num_labels==1 则为回归)损失。
  • logits (torch.FloatTensor,形状为 (batch_size, config.num_labels)) — 分类(如果 config.num_labels==1 则为回归)得分(SoftMax 之前)。
  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回)— 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量)
    包含预先计算的隐藏状态(自注意力块中的键和值),可用于加速顺序解码(查看past_key_values输入)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出+每一层的输出)。
    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

BloomForSequenceClassification 的前向方法覆盖了__call__特殊方法。

虽然前向传递的步骤需要在这个函数内定义,但应该在之后调用Module实例,而不是在这里调用,因为前者会负责运行前处理和后处理步骤,而后者会默默地忽略它们。

单标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, BloomForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
>>> model = BloomForSequenceClassification.from_pretrained("bigscience/bloom-560m")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BloomForSequenceClassification.from_pretrained("bigscience/bloom-560m", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, BloomForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
>>> model = BloomForSequenceClassification.from_pretrained("bigscience/bloom-560m", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BloomForSequenceClassification.from_pretrained(
...     "bigscience/bloom-560m", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

BloomForTokenClassification

class transformers.BloomForTokenClassification

<来源>

( config: BloomConfig )

参数

  • config(BloomConfig)— 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部有一个标记分类头的 Bloom 模型(隐藏状态输出的线性层),例如用于命名实体识别(NER)任务。

该模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入等)。

该模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有信息。

forward

<来源>

( input_ids: Optional = None past_key_values: Optional = None attention_mask: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None **deprecated_arguments ) → export const metadata = 'undefined';transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, input_ids_length)torch.LongTensor)— 如果past_key_valuesNone,则input_ids_length=sequence_length,否则input_ids_length=past_key_values[0][0].shape[2](输入过去键值状态的序列长度)。词汇表中输入序列标记的索引。
    如果使用past_key_values,则只应将未计算其过去的input_ids作为input_ids传递。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • past_key_values (Tuple[Tuple[torch.Tensor]] of length config.n_layers) — 包含由模型计算的预计算隐藏状态(注意力块中的键和值)(请参见下面的 past_key_values 输出)。可用于加速顺序解码。将其过去给予此模型的 input_ids 不应作为 input_ids 传递,因为它们已经计算过。past_key_values 的每个元素都是一个元组(past_key, past_value):
  • past_key: [batch_size * num_heads, head_dim, kv_length]
  • past_value: [batch_size * num_heads, kv_length, head_dim]
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在 [0, 1] 中选择:
  • 对于未被掩盖的标记为 not masked
  • 对于被掩盖的标记为 masked
  • 什么是注意力掩码?
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值在 [0, 1] 中选择。
  • 1 表示头部未被掩盖,
  • 0 表示头部被掩盖。
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制如何将 input_ids 索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
    如果使用 past_key_values,则可能只需输入最后的 inputs_embeds(参见 past_key_values)。
  • use_cache (bool, optional) — 如果设置为 True,则返回 past_key_values 键值状态,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回的张量下的 attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回的张量下的 hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含各种元素,具体取决于配置(BloomConfig)和输入。

  • loss (torch.FloatTensor of shape (1,), optional, 当提供 labels 时返回) — 分类损失。
  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.num_labels)) — 分类分数(SoftMax 之前)。
  • hidden_states可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)—形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出,如果模型有一个嵌入层,+一个用于每个层的输出)。
    模型在每一层输出的隐藏状态加上可选的初始嵌入输出。
  • attentions可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)—形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

BloomForTokenClassification 的前向方法,覆盖__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, BloomForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
>>> model = BloomForTokenClassification.from_pretrained("bigscience/bloom-560m")
>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

BloomForQuestionAnswering

class transformers.BloomForQuestionAnswering

< source >

( config )

参数

  • config(BloomConfig)—具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

BLOOM 模型变压器,顶部带有用于提取问答任务的跨度分类头,如 SQuAD(在隐藏状态输出顶部的线性层,用于计算span start logitsspan end logits)。

这个模型继承自 PreTrainedModel。查看超类文档以获取库实现的所有模型的通用方法(例如下载或保存,调整输入嵌入等)。

这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有信息。

forward

< source >

( input_ids: Optional = None attention_mask: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )

参数

  • input_ids(形状为(batch_size, input_ids_length)torch.LongTensor)—如果past_key_valuesNone,则input_ids_length=sequence_length,否则past_key_values[0][0].shape[2](输入过去键值状态的序列长度)。词汇表中输入序列标记的索引。
    如果使用past_key_values,则只应将未计算其过去的input_ids作为input_ids传递。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • past_key_values (Tuple[Tuple[torch.Tensor]],长度为config.n_layers) — 包含由模型计算的预计算隐藏状态(注意力块中的键和值)(请参见下面的past_key_values输出)。可用于加速顺序解码。将其过去传递给此模型的input_ids不应作为input_ids传递,因为它们已经计算过。past_key_values的每个元素都是一个元组(past_key, past_value):
  • past_key: [batch_size * num_heads, head_dim, kv_length]
  • past_value: [batch_size * num_heads, kv_length, head_dim]
  • attention_mask (torch.FloatTensor,形状为(batch_size, sequence_length)optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选定在[0, 1]之间:
  • 1 表示未被masked的标记,
  • 0 表示被masked的标记。
  • 什么是注意力掩码?
  • head_mask (torch.FloatTensor,形状为(num_heads,)(num_layers, num_heads)optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]之间:
  • 1 表示头部未被masked
  • 0 表示头部被masked
  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)optional) — 可选地,您可以选择直接传递嵌入表示而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
    如果使用past_key_values,则可选择仅输入最后的inputs_embeds(请参见past_key_values)。
  • use_cache (bool, optional) — 如果设置为True,则返回past_key_values键值状态,可用于加速解码(参见past_key_values)。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • start_positions (torch.LongTensor,形状为(batch_size,)optional) — 用于计算标记跨度的开始位置(索引)的标签,以计算标记分类损失。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会被考虑在内以计算损失。
  • end_positions (torch.LongTensor,形状为(batch_size,)optional) — 用于计算标记跨度的结束位置(索引)的标签,以计算标记分类损失。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会被考虑在内以计算损失。

BloomForQuestionAnswering 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

JAXHide JAX content

FlaxBloomModel

class transformers.FlaxBloomModel

< source >

( config: BloomConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config(BloomConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)— 计算的数据类型。可以是jax.numpy.float32之一,jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)。
    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了dtype,则所有计算将使用给定的dtype执行。
    请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
    如果要更改模型参数的 dtype,请参阅 to_fp16()和 to_bf16()。

裸的 Bloom 模型变压器输出原始隐藏状态,没有特定的头部。

此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是 Flax 亚麻flax.nn.Module子类。将其用作常规 Flax 模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。

最后,此模型支持 JAX 的固有功能,例如:

__call__

<来源>

( input_ids attention_mask = None past_key_values: dict = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, input_ids_length)numpy.ndarray)— input_ids_length = sequence_length。词汇表中输入序列标记的索引。
    可以使用BloomTokenizer获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)— 用于避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]中:
  • 对于未被masked的标记为 1,
  • 对于被masked的标记为 0。
  • 什么是注意力掩码?
  • past_key_values (Dict[str, np.ndarray], optional, returned by init_cache or when passing previous past_key_values) — 预先计算的隐藏状态的字典(在注意力块中的键和值),可用于快速自回归解码。预先计算的键和值隐藏状态的形状为 [batch_size, max_length]
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通元组。

返回值

transformers.modeling_flax_outputs.FlaxBaseModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(BloomConfig)和输入的不同元素。

  • last_hidden_state (jnp.ndarray,形状为(batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列。
  • hidden_states (tuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入输出,一个用于每一层的输出)。
    模型在每一层输出处的隐藏状态加上初始嵌入输出。
  • attentions (tuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    自注意力头中的注意力权重 softmax 后,用于计算自注意力头中的加权平均值。

FlaxBloomPreTrainedModel的前向方法,覆盖__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxBloomModel
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom")
>>> model = FlaxBloomModel.from_pretrained("bigscience/bloom")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state

FlaxBloomForCausalLM

class transformers.FlaxBloomForCausalLM

<来源>

( config: BloomConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config(BloomConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtype (jax.numpy.dtype可选,默认为jax.numpy.float32) — 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。
    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了dtype,则所有计算将使用给定的数据类型执行。
    请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
    如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

具有语言建模头部的 Bloom 模型变压器(线性层,其权重与输入嵌入绑定)。

这个模型继承自 FlaxPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个 Flax 亚麻flax.nn.Module子类。将其用作常规的 Flax 模块,并参考 Flax 文档以获取有关一般用法和行为的所有信息。

最后,这个模型支持 JAX 的内在特性,比如:

__call__

<来源>

( input_ids attention_mask = None past_key_values: dict = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxMaskedLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray,形状为(batch_size, input_ids_length)) — input_ids_length = sequence_length。词汇表中输入序列标记的索引。
    可以使用BloomTokenizer获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (numpy.ndarray,形状为(batch_size, sequence_length)可选) — 避免在填充标记索引上执行注意力的掩码。选择在[0, 1]中的掩码值:
  • 对于未被masked的标记为 1,
  • 对于被masked的标记为 0。
  • 什么是注意力掩码?
  • past_key_values (Dict[str, np.ndarray], 可选, 由init_cache返回或传递先前的past_key_values时返回) — 预先计算的隐藏状态的字典(在注意力块中的键和值),可用于快速自回归解码。预先计算的键和值隐藏状态的形状为*[batch_size, max_length]*。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一个torch.FloatTensor元组(如果传递了return_dict=False或者config.return_dict=False时)包含根据配置(BloomConfig)和输入的各种元素。

  • logits (jnp.ndarray,形状为(batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_states (tuple(jnp.ndarray), 可选, 当传递output_hidden_states=True或者config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
    模型在每个层的输出处的隐藏状态加上初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxBloomPreTrainedModel的前向方法,覆盖了__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxBloomForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom")
>>> model = FlaxBloomForCausalLM.from_pretrained("bigscience/bloom")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
7月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(二十九)(5)
Transformers 4.37 中文文档(二十九)
61 11
|
7月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(二十六)(4)
Transformers 4.37 中文文档(二十六)
43 1
|
7月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(二十六)(3)
Transformers 4.37 中文文档(二十六)
43 0
|
7月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(二十九)(4)
Transformers 4.37 中文文档(二十九)
43 12
|
7月前
|
PyTorch TensorFlow API
Transformers 4.37 中文文档(二十九)(2)
Transformers 4.37 中文文档(二十九)
41 5
|
7月前
|
PyTorch 算法框架/工具 异构计算
Transformers 4.37 中文文档(二十二)(4)
Transformers 4.37 中文文档(二十二)
39 3
|
7月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(二十九)(1)
Transformers 4.37 中文文档(二十九)
62 3
|
7月前
|
缓存 自然语言处理 PyTorch
Transformers 4.37 中文文档(二十二)(2)
Transformers 4.37 中文文档(二十二)
53 2
|
7月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(二十九)(3)
Transformers 4.37 中文文档(二十九)
52 2
|
7月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(二十六)(5)
Transformers 4.37 中文文档(二十六)
29 1