[AI Kimi] Context Caching 正式公测,推动长文本模型降本 90%

简介: Kimi 的上下文缓存(Context Caching)技术正式公测。该技术通过预先存储数据,显著降低了计算成本和延迟,适用于长文本模型,帮助节省高达 90% 的费用,并将首 Token 延迟降低 83%。

Kimi 的上下文缓存(Context Caching)技术,开启了公测。我们一起来看下。

介绍

上下文缓存(Context Caching)是一种高效的数据管理技术,它允许系统预先存储那些可能会被频繁请求的大量数据或信息。这样,当您再次请求相同信息时,系统可以直接从缓存中快速提供,而无需重新计算或从原始数据源中检索,从而节省时间和资源。

效果

  • 费用最高降低 90 %
  • 首 Token 延迟降低 83%

快速开始

创建 cache

from openai import OpenAI
import requests
import json

client = OpenAI(
    api_key = "$MOONSHOT_API_KEY",
    base_url = "https://api.moonshot.cn/v1",
)

res = requests.post(
    url = "https://api.moonshot.cn/v1/caching",
    headers = {
   
        "Authorization": "Bearer $MOONSHOT_API_KEY"            
    },
    json = {
   
        "model": "moonshot-v1",
        "messages": [
            {
   
                "role": "system",
                "content": "你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。你会为用户提供安全,有帮助,准确的回答。同时,你会拒绝一切涉及恐怖主义,种族歧视,黄色暴力等问题的回答。Moonshot AI 为专有名词,不可翻译成其他语言。"
            },
        ],
        "tools": [{
   
            "type": "function",
            "function": {
   
                "name": "CodeRunner",
                "description": "代码执行器,支持运行 python 和 javascript 代码",
                "parameters": {
   
                    "properties": {
   
                        "language": {
   
                            "type": "string",
                            "enum": ["python", "javascript"]
                        },
                        "code": {
   
                            "type": "string",
                            "description": "代码写在这里"
                        }
                    },
                    "type": "object"
                }
            }
        }],
        "name": "CodeRunner",
        "ttl": 3600
    }
)

print(json.loads(res.text))

返回

{
   
    'id': 'cache-essqmysd6h1111dauub1',
    'object': 'context_cache_object',
    'model': 'moonshot-v1',
    'messages': [{
   
        'role': 'system',
        'content': '你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。你会为用户提供安全,有帮助,准确的回答。同时,你会拒绝一切涉及恐怖主义,种族歧视,黄色暴力等问题的回答。Moonshot AI 为专有名词,不可翻译成其他语言。'
    }],
    'tools': [{
   
        'function': {
   
            'name': 'CodeRunner',
            'description': '代码执行器,支持运行 python 和 javascript 代码',
            'parameters': {
   
                'properties': {
   
                    'code': {
   
                        'description': '代码写在这里',
                        'type': 'string'
                    },
                    'language': {
   
                        'enum': ['python', 'javascript'],
                        'type': 'string'
                    }
                },
                'type': 'object'
            }
        },
        'type': 'function'
    }],
    'name': 'CodeRunner',
    'description': '',
    'metadata': None,
    'expired_at': 1718847499,
    'status': 'pending',
    'tokens': 72
}

使用 cache

role="cache"

from openai import OpenAI

client = OpenAI(
    api_key = "$MOONSHOT_API_KEY",
    base_url = "https://api.moonshot.cn/v1",
)

completion = client.chat.completions.create(
    model="moonshot-v1-8k",
    messages=[  
        {
   
            "role": "cache",
            "content": "cache_id=cache-essqmysd6h1111dauub1;reset_ttl=3600",
        },
        {
   
            "role": "user",
            "content": "编程判断 3214567 是否是素数。",
        },
    ],
    temperature=0.3,
)

print(completion.choices[0].message)

返回

ChatCompletionMessage(content='判断一个数是否是素数,我们可以使用一个简单的算法:检查从2到该数的平方根之间的所有整数是否能整除该数。如果有一个能整除,那么这个数就不是素数。如果没有任何数能整除它,那么它就是素数。
对于给定的数3214567,我们可以编写一个程序来实现这个算法。下面是一个使用Python语言的示例代码:
import math

def is_prime(number):
    if number <= 1:
        return False
    for i in range(2, int(math.sqrt(number)) + 1):
        if number % i == 0:
            return False
    return True

number_to_check = 3214567
print(is_prime(number_to_check))

这段代码定义了一个函数`is_prime`,它接受一个整数作为参数,并返回一个布尔值,表示这个数是否是素数。然后,我们使用这个函数来检查3214567是否是素数。', role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='CodeRunner:0', function=Function(arguments='{
    "code": "import math

def is_prime(number):
    if number <= 1:
        return False
    for i in range(2, int(math.sqrt(number)) + 1):
        if number % i == 0:
            return False
    return True

number_to_check = 3214567
is_prime(number_to_check)
"
}', name='CodeRunner'), type='function', index=0)])

计费

  • cache 资源费 = cache 创建费 + cache 存储费
  • 一次调用收费 = Cache 调用收费+ Chat 未匹配 Cache 的 Input Tokens 收费 + Output Tokens 收费

具体详细价格看官方文档

Caching - Moonshot AI 开放平台


相关文章
|
17天前
|
人工智能 供应链 PyTorch
TimesFM 2.0:用 AI 预测流量、销量和金融市场等走势!谷歌开源超越统计方法的预测模型
TimesFM 2.0 是谷歌研究团队开源的时间序列预测模型,支持长达2048个时间点的单变量预测,具备零样本学习能力,适用于零售、金融、交通等多个领域。
131 23
TimesFM 2.0:用 AI 预测流量、销量和金融市场等走势!谷歌开源超越统计方法的预测模型
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
三行代码实现实时语音转文本,支持自动断句和语音唤醒,用 RealtimeSTT 轻松创建高效语音 AI 助手
RealtimeSTT 是一款开源的实时语音转文本库,支持低延迟应用,具备语音活动检测、唤醒词激活等功能,适用于语音助手、实时字幕等场景。
108 18
三行代码实现实时语音转文本,支持自动断句和语音唤醒,用 RealtimeSTT 轻松创建高效语音 AI 助手
|
20天前
|
机器学习/深度学习 人工智能 安全
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
GLM-Zero 是智谱AI推出的深度推理模型,专注于提升数理逻辑、代码编写和复杂问题解决能力,支持多模态输入与完整推理过程输出。
163 24
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
VideoWorld:字节开源自回归视频生成模型,支持输入视频指导AI生成视频!弥补文本生成视频的短板
VideoWorld 是由字节跳动、北京交通大学和中国科学技术大学联合推出的自回归视频生成模型,能够从未标注的视频数据中学习复杂知识,支持长期推理和规划任务。
96 8
VideoWorld:字节开源自回归视频生成模型,支持输入视频指导AI生成视频!弥补文本生成视频的短板
|
10天前
|
人工智能 编解码 自然语言处理
CogView-3-Flash:智谱首个免费AI图像生成模型,支持多种分辨率,快速生成创意图像
CogView-3-Flash 是智谱推出的首个免费AI图像生成模型,支持多种分辨率,快速生成高质量图像,广泛应用于广告、设计、艺术创作等领域。
47 6
CogView-3-Flash:智谱首个免费AI图像生成模型,支持多种分辨率,快速生成创意图像
|
10天前
|
人工智能 编解码
CogVideoX-Flash:智谱首个免费AI视频生成模型,支持文生视频、图生视频,分辨率最高可达4K
CogVideoX-Flash 是智谱推出的首个免费AI视频生成模型,支持文生视频、图生视频,最高支持4K分辨率,广泛应用于内容创作、教育、广告等领域。
129 5
CogVideoX-Flash:智谱首个免费AI视频生成模型,支持文生视频、图生视频,分辨率最高可达4K
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
Emotion-LLaMA:用 AI 读懂、听懂、看懂情绪,精准捕捉文本、音频和视频中的复杂情绪
Emotion-LLaMA 是一款多模态情绪识别与推理模型,融合音频、视觉和文本输入,通过特定情绪编码器整合信息,广泛应用于人机交互、教育、心理健康等领域。
81 11
Emotion-LLaMA:用 AI 读懂、听懂、看懂情绪,精准捕捉文本、音频和视频中的复杂情绪
|
11天前
|
机器学习/深度学习 数据采集 人工智能
昇腾AI行业案例(七):基于 Conformer 和 Transformer 模型的中文语音识别
欢迎学习《基于 Conformer 和 Transformer 模型的中文语音识别》实验。本案例旨在帮助你深入了解如何运用深度学习模型搭建一个高效精准的语音识别系统,将中文语音信号转换成文字,并利用开源数据集对模型效果加以验证。
32 12
|
14天前
|
存储 人工智能 数据可视化
昇腾AI行业案例(五):基于 DANet 和 Deeplabv3 模型的遥感图像分割
欢迎学习《基于 DANet 和 Deeplabv3 模型的遥感图像分割》实验。在本实验中,你将深入了解如何运用计算机视觉(CV)领域的 AI 模型,搭建一个高效精准的遥感地图区域分割系统,并利用开源数据集和昇腾 AI 芯片对模型效果加以验证。
26 0
昇腾AI行业案例(五):基于 DANet 和 Deeplabv3 模型的遥感图像分割
|
15天前
|
存储 Serverless 文件存储
AI 场景下,函数计算 GPU 实例模型存储最佳实践
当前,函数计算 FC 已被广泛应用在各种 AI 场景下,函数计算支持通过使用容器镜像部署 AI 推理应用,并且提供多种选项来访问训练好的模型。为了帮助开发者高效地在函数计算上部署 AI 推理应用,并快速解决不同场景下的模型存储选型问题,本文将对函数计算的 GPU 模型存储的优缺点及适用场景进行对比分析,以期为您的模型存储决策提供帮助。