深度学习

简介: 【6月更文挑战第6天】深度学习。

机器学习通常包含输入、特征提取、分类和输出4个步骤。深度学习通常分为输入、特征提取与分类和输出3个步骤,它将机器学习中的特征提取和分类合并在同一个步骤中完成。相对于机器学习,深度学习需要提供的输入数据量更大,计算量也更大。深度学习的“深度”体现在神经网络层次规模上,例如,ResNet及其变种实现的神经网络多达上百层。
OpenCV在3.1版本中引入了一个深度神经网络贡献模块(名称为dnn),并在3.3版本中将其迁移到了主库中。dnn模块目前实现前馈(推理)方法,只需要导入预训练模型即可实现基于深度学习的图像处理。OpenCV支持目前流行的深度学习框架,包括Caffe、TensorFlow和Torch/Pytorch等,以及基于开放神经网络交换(Open Neural Network Exchange,ONNX)的框架。在应用程序中,只需要导入预训练模型,即可用准备好的数据执行预测操作,获得需要的处理结果。

图像识别是将图像内容作为一个对象来识别其类型。使用OpenCV中的深度学习预训练模型进行图像识别的基本步骤如下。
(1)从配置文件和预训练模型文件中加载模型。
(2)将图像文件处理为块数据(blob)。
(3)将图像文件的块数据设置为模型的输入。
(4)执行预测。
(5)处理预测结果。
1.基于AlexNet和Caffe模型的图像识别
AlexNet由2012年ImageNet竞赛冠军获得者辛顿(Hinton)和他的学生阿莱克斯·克里泽夫斯基(Alex Krizhevsky)设计,其网络结构包含了5层卷积神经网络(Convolutional Neural Network,CNN),3层全连接网络,采用GPU来加速计算。在处理图像时,AlexNet使用的图像块大小为224×224。
Caffe的全称为快速特征嵌入的卷积结构(Convolutional Architecture for Fast Feature Embedding),是一个兼具表达性、速度和思维模块化的深度学习框架。Caffe由伯克利人工智能研究小组和伯克利视觉和学习中心开发。Caffe内核用C++实现,提供了Python和Matlab等接口。
下面的代码使用基于AlexNet和Caffe的预训练模型进行图像识别。
深度残差网络(Deep Residual Network,ResNet)由何凯明(Kaiming He)等人提出,其主要特点是在神经网络中增加了残差单元,可通过残差学习解决因网络深度增加带来的退化问题,提高预测准确率。
下面的代码使用基于ResNet和Caffe的预训练模型进行图像识别。

相关文章
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
什么是深度学习
【10月更文挑战第23天】什么是深度学习
|
3月前
|
机器学习/深度学习 传感器 监控
基于深度学习的感知和认知系统
基于深度学习的感知-认知系统结合了感知和认知两大核心模块,旨在为机器提供从数据采集、分析到决策制定的一整套能力。这种系统模仿人类的感知(如视觉、听觉)和认知(如推理、决策)过程,能够高效地感知复杂环境,并进行智能决策。
59 2
|
5月前
|
机器学习/深度学习 自然语言处理 机器人
深度学习的应用
【7月更文挑战第30天】深度学习的应用
86 3
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
了解深度学习
【6月更文挑战第26天】了解深度学习。
44 3
|
6月前
|
机器学习/深度学习 传感器 安全
|
7月前
|
机器学习/深度学习 人工智能 算法
深度学习领域
【5月更文挑战第3天】深度学习领域
65 7
|
机器学习/深度学习 计算机视觉
深度学习资料总结
深度学习资料总结
|
机器学习/深度学习 算法 芯片
深度学习初识
深度学习初识
109 0
|
机器学习/深度学习 自然语言处理 算法
深度学习的介绍
目标: 1.知道什么是深度学习 2.知道深度学习和机器学习的区别 3.能够说出深度学习的主要应用场景 4.知道深度学习的常用框架
深度学习的介绍
|
机器学习/深度学习 编解码 文字识别
深度学习系列资料总结(二)
深度学习定义:一般是指通过训练多层网络结构对未知数据进行分类或回归 深度学习分类: 有监督学习方法——深度前馈网络、卷积神经网络、循环神经网络等; 无监督学习方法——深度信念网、深度玻尔兹曼机,深度自编码器等。
829 0